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Abstract

The Green Paradox posits that fossil fuel markets respond to changing expectations about climate legisla-
tion, which limits future consumption, by shifting consumption to the present through lower present-day
prices. We demonstrate that oil futures responded negatively to daily changes in the prediction market’s
expectations that the Waxman-Markey bill — the US climate bill discussed in 2009-2010 — would pass.
This effect is consistent across various maturities as the proposed legislation would reset the entire price
and consumption path, unlike temporary supply or demand shocks that phase out over time. The bill’s
passage would have increased current global oil consumption by 2-4%. Furthermore, a strengthening of
climate policy, as measured by monthly variations in media salience regarding climate policy over the last
four decades, and two court rulings signaling limited future fossil fuel use, were associated with negative
abnormal oil future returns. Taken together, our findings confirm that restricting future fossil fuel use
will accelerate current-day consumption.
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Climate legislation often establishes goals for the future to give companies and consumers time to adapt

and plan for a transition away from fossil fuels. For example, the European Union enacted the goal to be

climate neutral (net zero emissions) by 2050, while China established the same goal for 2060. Fossil fuels are

exhaustible resources, and their finite availability dictates their use and price path (Hotelling 1931). This

scarcity leads to a price that exceeds the marginal extraction cost, resulting in resource rents that ensure less

is consumed today and fossil fuels are saved for the future.1 The literature on the “Green Paradox” highlights

that climate legislation, which limit future fossil fuel use, give resource owners an incentive to extract more

in the present and medium term before the regulation binds, leading to lower prices, accelerated resource

depletion, and higher consumption today. This theoretical literature is based on Hotelling’s seminal model

(Hoel 2010a, Sinn 2008a, Sinn 2008b, Van der Ploeg and Withagen 2012, Van der Ploeg and Withagen 2015).

By the same logic, a global carbon tax on fossil fuels with scarcity rents will not be passed on to consumers.

If producers did so, then demand for fossil fuels would fall, cumulative consumption would decrease and

not all fossil fuels would be used, incentivizing resource owners to lower fossil fuel prices to sell all units.

In the end, much of a carbon tax would be absorbed by producer rents with limited effects on fossil fuel

use or consumers (Dasgupta, Heal and Stiglitz 1980, Heal and Schlenker 2019). What is common to both a

carbon tax and future carbon quantity regulation is the concern that such legislation might not lead to the

desired reductions in cumulative fossil fuel use and may even accelerate consumption today through lower

prices, limiting the regulation’s effectiveness. On the other hand, the limited pass-through alleviates widely

held apprehensions that such policy would have distributional consequences and high personal costs. If the

dynamics of Hotelling’s rule shield consumers from a global carbon tax, it would significantly improve public

opinion of such a policy (Dechezleprêtre, Fabre, Kruse, Planterose, Sanchez Chico and Stantcheva 2022).

The “Green Paradox” hence has important implications for both the effectiveness of climate legislation in

limiting fossil fuel use as well as the pass-through of carbon taxes, yet most of the literature to date has

been theoretical.

Our paper adds to the emerging empirical literature on the “Green Paradox.” Specifically, we test the

predictions of the “Green Paradox” using several data sources on different timescales. We consistently find

evidence of the mechanism underlying the “Green Paradox:” additional restrictions on oil use, or an increased

likelihood of future restrictions, reduce both the oil spot price and oil futures prices in the years for which

futures data are traded, i.e., the following two years. This occurs as supply is reallocated from the future

to the present. This pattern holds true when analyzing monthly returns in conjunction with decades-long

data on policy stringency, when using high-frequency daily data on oil prices coupled with daily changes in

prediction market prices, as well as when estimating the oil price return after unexpected news regarding

court cases that limited future fossil fuel use.

Empirically testing the “Green Paradox” is difficult because the analysis requires information about firms’

expectations of climate policy stringency for which there is very little data. We side step this challenge

through the use of prediction market prices, a measure that captures the market’s expectations, a news

based index proxying for information shocks related to climate policy, and unexpected news regarding court

cases that mandated changing climate policy.

We begin by documenting that oil price shocks, i.e., changes in the daily oil price, have become stickier

1For example, Saudi Arabia’s extraction cost are less than 10 dollars per barrel for most of its oil fields, while the oil price
is an order of magnitude higher.
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over the last three decades, implying that shocks have become more permanent rather than transitory.

Under the “Green Paradox,” uncertainty from climate legislation deliberations leads to persistent (sticky)

price changes, as changes in expectations around future climate legislation reset the entire future oil price

path and hence impact all maturities equally. Consistent with this prediction, we find the persistence of

spot price shocks among maturities ranging from 1 to 24 months greatly increased during periods when

climate bills were under consideration (the 2000s and 2010s). Daily changes in the oil spot price translate

into roughly the same change in oil futures prices with a maturity one month into the future throughout

the sample period. However, the story differs for longer-term maturities: in the 1990s, spot price shocks

phased out for oil futures with longer maturities. Specifically, only about a third of the spot price change was

reflected in the oil futures with a 24-month maturity. Around 2010, the fraction doubled to two thirds, i.e.,

daily shocks phased out slower with longer-term maturity futures. This finding only reverses in the 2020s,

when COVID-related temporary supply disruptions lead to a decoupling of future and spot price movements.

The time profile of how shocks phase out provides an important baseline for subsequent analysis.

In a second step, we pair monthly oil price data with monthly estimates of U.S. renewable policy and

international climate negotiation salience. We measure policy salience using Noailly, Nowzohour and Van

Den Heuvel (2021)’s news-based indices generated by text-mining articles from ten leading US newspapers

published between 1981 and 2019. The indices reflect the monthly number of articles covering US renewable

policy and international climate negotiations, respectively, relative to the total number of articles published.

While the “Green Paradox” makes no direct predictions of the effect of climate policy salience on oil prices, the

measure of climate policy salience used in this paper generally tracks events that strengthened future climate

policy, i.e., the renewable policy index peaks after the passage of renewable policy. Hence, pairing oil prices

with the news based indices can provide a suggestive yet compelling test of the paradox’s prevalence over

the last four decades. The “Green Paradox” predicts that the indices should be negatively correlated with

oil prices. For example, increases in the international negotiations index indicate international cooperation

around climate likely strengthened, elevating the expected stringency of future climate policy, causing oil

producers to supply more today, and consequently reducing prices. Consistent with the paradox’s predictions,

we find increases in the salience of international climate negotiations significantly reduce oil prices.

On the other hand, we find increases in the salience of renewable energy policy significantly increase

oil prices. Renewable energy programs have two countervailing effects: strengthening renewable energy

policy could reduce the backstop price causing oil producers to increase supply today, reducing oil prices.

Alternatively, strengthening of renewable policy has often occurred in place of climate policy, thereby easing

the concern that there might be future restriction on fossil fuel use, resulting in higher oil prices as future

supply is no longer threatened. Our finding suggests that the latter dominates, i.e., oil producers do not

view current renewable policy as a threat to future oil demand and supply in the future, but instead as a

distraction from climate policy, reducing the probability of stricter climate policy in the future. We present

tests to rule out reverse causality, i.e., the possibility that higher oil prices correlated with positive oil future

returns increased the likelihood that renewable policy passed and renewable policy salience. Specifically, our

findings are robust to controlling for the oil spot price.

In a third step, we present a direct test of the “Green Paradox” in our preferred specification by pairing

daily oil price data with daily estimates of the market’s expectations that Waxman-Markey would pass.

Waxman-Markey was a climate bill that intended to limit economy wide greenhouse gas emissions in the
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U.S. through cap and trade. We retrieve the market’s expectations using prediction market contract prices

in 2009 and 2010. Theory predicts that increases in the probability of a cap and trade bill passing should

reduce contemporaneous oil prices and vice versa. Consistent with this prediction, we find a significant

negative coefficient; prices of oil futures decline whenever the expected likelihood that the bill will pass

increases. This effect is persistent across all futures contracts, even increasing for longer-term maturities,

suggesting that the relationship reflects long-term adjustments in the expected oil price path rather than

temporary shocks. Through our analysis we find (i) the passage of the Waxman-Markey bill would have

increased global oil consumption 2-4% and (ii) Waxman-Markey deliberations increased oil consumption by

8-27 million metric tons equivalent to 1-3 days of global oil consumption. We present two pieces of evidence

to rule out the possibility that reverse causality could explain our finding, i.e., that lower oil prices associated

with negative returns increased the likelihood that a climate bill would pass, or stated differently, opposition

to the bill was higher when oil prices were higher. We find that the effect is even larger and more significant

when we limit the sample to days with major changes in prediction market prices – these major changes

were driven by political negotiations at committee meetings that were scheduled in advance and should not

have been influenced by day-to-day oil price movements, ruling out reverse causality. Moreover, there is no

qualitative difference in the relationship when we control for the oil spot price. In a falsification check, we

find no significant effect if we use a one-period lead in prediction market price changes,2 confirming that

prediction market movements on a particular day and the implied news on that day lead to changes in oil

future prices.

In a fourth step, we construct the abnormal oil price returns on the days two historic climate court cases

were made public. Specifically, we study the effect of the surprise Urgenda v. Netherlands rendering, when a

Dutch court sided with an environmental group and ordered the Dutch government to have stricter limits on

future fossil fuel emissions. When the ruling was announced, people predicted it would set a precedent for all

countries subject to the European Convention. Additionally, we study the effect on the day news coverage

suggested that Justice Kennedy, the swing vote in the Massachusetts v. EPA Supreme Court case, would

support the states suing the EPA to regulate automobile carbon dioxide emissions. At the time that the case

was deliberated, numerous additional climate court cases awaited the Supreme Court’s verdict, including

a case challenging the EPA’s refusal to regulate power plant carbon dioxide emissions. In both instances,

we find significant negative coefficients, i.e., oil futures prices declined when new information increased the

expected likelihood of limitations on future fossil fuel use.

Taken together, these findings show that the oil market is sensitive to climate laws and that expected

restrictions on future fossil fuel use will lead to increased consumption today. The economics of exhaustible

resources predicts that discoveries of an exhaustible resource influence the scarcity of a resource and its

price (Ekeland, Schlenker, Tankov and Wright 2022). If total availability of an exhaustible resource goes

up through a new discovery, the expected future price path resets and is lowered. The effect of climate

legislation is analogous: by limiting resource use in the long-term, available resources are shifted towards the

short and medium-term. By the same token, scarcity rents will absorb carbon taxes, shielding consumers.

Our paper contributes to the emerging empirical literature on the “Green Paradox,” by documenting how

environmental laws can increase present-day oil demand through lowering prices. Grafton, Kompas, Long

2We look at returns between consecutive closing prices, which generally implies a period of one day, expect over weekends
and holidays, when a period covers 2-3 days.
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and To (2014) show that increases in biofuel production, a substitute to fossil fuels, increase oil production.

Di Maria, Lange and van der Werf (2014) show that the passage of the acid rain program decreased the

price of high-sulphur coal. Merrill (2018) finds the out-of-committee introduction of climate related bills in

congress accelerate oil and gas firm wellhead investments. Lemoine (2017) observes an abnormal return in

coal futures on the day Graham abandoned the Waxman-Markey bill on Monday, April 26, 2010. Barnett

(2023) observe abnormal returns in the oil spot price in response to climate transition events – major events

in the energy industry, election results, and other major shifts in climate policy.

A challenge of previous papers is to determine when the market updated its beliefs about the likelihood

of a policy change. The “Green Paradox” is derived from expectations of future prices, and markets might

see and react to an impending regulation before it is officially implemented and ratified (Dube, Kaplan and

Naidu 2011, McDermott, Meng, McDonald and Costello 2019, Langer and Lemoine 2020). Lemoine (2017),

Merrill (2018), and Di Maria et al. (2014) test the paradox’s predictions using policy or information shocks

occurring at a specific moment, relying on comparisons between the period before and after a single shock.

Grafton et al. (2014) uses annual variation in biofuel production as a proxy for annual variation in biofuel

subsidies to test the paradox. Barnett (2023) interacts climate transition events with a portfolio tracking

the response of firms highly exposed to climate transition risk to account for and recover dynamics in the

magnitude and timing of transition events.

We see the novelty of our paper as follows: our approach’s reliance on monthly and daily information

shocks allow us to both capture how the policy making process – announcements, deliberation, redrafting,

and upheavals – impacts oil prices and employ more convincing variation in the market’s beliefs regarding the

stringency of future climate policy. Additionally, the referenced empirical “Green Paradox” literature might

be susceptible to reverse causality. For political economy reasons, a bill might be more easily passed when

a resource was declining in economic importance and the price was falling. Or, a subsidy might be more

easily implemented when there is generally more demand for fuel. In both cases, estimates of the “Green

Paradox” could instead reflect reverse causality. A key innovation of our paper is that our approach is more

defensible against the concerns of reverse causality as we employ a panel data set encompassing numerous

daily changes in expectations that occurred in response to previously scheduled committee meetings. These

meetings, scheduled weeks or months in advance, are unlikely to coincide with daily oil spot price shocks.

Our paper builds most closely on Lemoine (2017) and reinforces its findings. We make several additional

contributions: first, our analysis is less likely to be confounded by other events as our analysis relies on various

time scales including high-frequency daily data. For example, during the week of Graham’s abandonment,

the focus of Lemoine (2017), a catastrophic oil spill in the Gulf of Mexico, known as Deep Water Horizon,

unfolded. This spill makes focusing on the effect of Graham’s abandonment on fossil fuel prices difficult, as

uncoupling the effect of the spill from the bill’s abandonment is empirically challenging. It is also not entirely

clear when the market learned of Graham’s announcement.3 Instead, we rely on variation in prediction

market prices over the course of one-and-a-half years, during which Waxman-Markey bill deliberations took

place, to identify the effect of changes in the expected stringency of future climate policy on oil prices.

3The immigration bill that lead to the demise of Waxman-Markey was announced Thursday April 22nd (Lemoine 2017).
The market’s expectation that Waxman-Markey would pass did not change until Saturday April 24th when it decreased by 5
probability points. The market’s expectation again decreased by 5 probability points on Sunday April 25th before increasing
by just under 5 probability points on Monday the 26th. Additionally, the Waxman-Markey Google Trends index exceeded 5%
of the most popular day on Wednesday April 21st and 10% on Saturday April 24th. The index was zero on the 22nd, 23rd,
25th and 26th indicating these days had too little search volume to determine relative popularity.
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Second, coal supply, the major focus of Lemoine’s paper may be less sensitive to changes in future US climate

policy than oil because air quality regulation protecting local environments already heavily restricts US coal

consumption, limiting resource rents today, and consequently limiting the “Green Paradox” (Hoel 2010b).

Our paper also contributes more generally to an empirical literature demonstrating that the anticipation

of or uncertainty around a new environmental policy can induce behaviors counteracting or enhancing the

policy’s intended benefits (Polasky and Doremus 1998, McDermott et al. 2019, Gowrisankaran, Langer and

Zhang 2022, Dorsey 2019, Mukanjari and Sterner 2018, Bruno and Hagerty 2023). Even more broadly, policy

anticipation is a well considered and documented topic in public economics; policy anticipation can impact

consumption, investment or job selection prior to policy implementation, affecting a policy’s effectiveness

(Judd 1987, Gründler and Sauerhammer 2018, Kleven, Landais and Saez 2013). The literature on anticipation

effects consistently struggles to determine when actors update beliefs and results are sensitive to these

researcher choices. Unique to this literature, our paper focuses on oil prices’ reaction to the policy making

process, testing “Green Paradox” predictions through the use of high-frequency variation in expectations

around the stringency of future regulation to identify how markets react to policy making.

1 Model

We will briefly review the theory behind the Green Paradox to motivate our empirical analysis. Starting

with the simplest case where there are no extraction costs, the fossil-fuel resource endowment is S0 and

demand is iso-elastic, i.e., quantity consumed q = α
pη where α is a constant and the price-elasticity is η. The

inverse demand curve is p = η

√
α
q .

The arbitrage condition implies that price has to rise at the rate of interest δ over time t, or p(t) = p0e
δt.

The extraction quantity is hence q(pt) = α
pη = α

pη
0
e−δηt. Additionally, all reserves are eventually used up.

There is no incentive for a competitive firm not to extract everything, as it has no influence on the price and

extraction costs are zero.

S0 =

∫ ∞

0

q(t)dt =

∫ ∞

0

α

pη0
e−δηtdt =

[
− 1

δη

α

pη0
e−δηt

]∞
0

=
1

δη

α

pη0

Hence the initial endowment combined with the arbitrage condition pins down the optimal extraction path

in a competitive equilibrium (as α
pη
0
= δηS0):

q(t) = δηS0e
−δηt

The initial quantity consumed is q0 = δηS0, and q(t) is decreasing at an exponential rate, approaching

zero, but never equaling zero. For any quantity q̄ < δηS0 there is a time t̄ when qt̄ = q0e
−δηt̄ = q̄ or

t̄ = 1
δη [ln(δηS0)− ln(q̄)].

The Waxman-Markey bill limited the amount that was allowed to be consumed from some future point

onward i.e., q(t) ≤ q̄ ∀t ≥ t̂. There are two possible cases: first, if t̄ ≤ t̂ the regulation is not binding as the

quantity extracted from t̂ onward is already below the mandate and hence nothing changes.

The second, and more interesting case, is when the regulation is binding as t̄ > t̂ and the competitive

equilibrium would have implied a consumption q(t) > q̄ for the time interval [t̂, t̄]. A sample case is shown
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in the top graph of Figure 1. It uses a discount rate of 3 percent, and a demand elasticity of η = 0.59,

which is consistent with empirical estimates (Hamilton 2009). While the Markey-Waxman bill had several

features that evolved over time, we display the mandated 83% reduction by 2050. Please note that the

figure is used as a motivating example, not a projection of actual oil use and prices. Our example does not

include expected outward shifts in demand (global population and income growth) and new discoveries, as

we assume a stationary demand and a fixed known endowment, S0. In our motivating example, we have

[t̂, t̄] = [2050, 2110]. Under the competitive equilibrium, consumption on this time interval would have been

∫ t̄

t̂

q(t)dt =

∫ t̄

t̂

δηS0e
−δηtdt = S0e

−δηt̂ − q̄

δη

The regulation only allows for q̄[t̄ − t̂] in consumption, ∆S = S0e
−δηt̂ − q̄

[
1
δη + t̄− t̂

]
less than the

consumption in competitive equilibrium on this interval, shown as area A in Figure 1. If the proposed climate

bill had passed, the optimal extraction path reallocates extraction that would have otherwise occurred during

the time interval [t̂, t̄] to before t̂ = 2050 and after t̄ = 2110.

We denote the revised quantity and price paths as q′(t) and p′(t), respectively. The revised optimal

quantity path starts with a larger q′0 > q0 = δηS0, which leads to higher initial consumption on [0, t̂], shown

as area B1. For the revised optimal extraction path to be optimal, it must be the case that p′t1 = e−δ[t1−t̂]p′
t̂

for any t1 > t̂ when the quantity regulation is non-biding, otherwise arbitrageurs would benefit from shifting

production to utilize the fact that prices are not rising at the rate of interest. The exponential rise in prices

implies an exponential decline in quantity consumed q(t) = q′0e
−δηt1 when the regulation is non-binding.

The unrestricted continuation path from the re-optimized consumption path is shown as a grey dashed line

in the bottom panel of Figure 1. When the regulation is non-binding, extraction occurs at a faster rate than

the extraction path in the absence of regulation.4

The time period when regulation stops binding is hence no longer at t̄ = 2110 in the bottom panel of

Figure 1, but when the re-optimized path q′0e
−δηt = q̄. Since q′0 > q0, we know that t̄′ > t̄. The time when

regulation is binding is extended to t̄′ = 2122 under the re-optimized path in Figure 1. Consumption is

higher under the re-optimized path from t̄ = 2110 onward, as shown by the area B2. The reallocation of

consumption across time implies that the sum of area B1 and B2 equals A.

As highlighted in Figure 1, an increase in the stringency of future climate policy theoretically increases

the optimal rate of extraction before the policy enters into force and hence reduces the resource price in the

present. In our primary analysis, we never observe any actual change in the stringency of future climate

policy. We do observe changes in market expectations around the stringency of future climate policy. In

our prediction market analysis, we exploit variation in these expectations to identify how the expected

price path of oil would differ if these policies went into effect. Since the prediction market reflects the

probability that US climate law will pass, the effect on global oil prices is also influenced by the market’s

belief that other countries will follow suit or free ride. We assume that these follow-on effects are positive,

i.e., a US regulation makes it weakly more likely that other countries will follow suit. Any expected free

riding does not compensate for the expected demand reductions caused by US regulation as well as other

countries’ subsequent policies. This assumption seems plausible as political pressure by the United States

4This is equivalent to assuming a higher initial endowment where part of the time quantity consumed is restricted.
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likely would attenuate free riding.5 Under this assumption, the Hotelling model predicts that an increase in

the probability of the US law passing will lower oil prices.

2 Data

Fossil Fuel Futures Prices

Oil futures are obtained from NYMEX, specifically futures on the West Texas Intermediate (WTI) crude

price. Oil futures contracts are the market’s assessment of future oil prices. If traders are risk neutral and

the market efficiently aggregates information, then contract prices reflect society’s best guess of the future oil

price (Kellogg 2014). We obtained oil futures prices for futures with liquid contracts. These range between

1 and 24 months into the future, reflecting the market’s best guess of oil prices over the upcoming two years

on a monthly basis (24 different contracts). Additionally, in some sensitivity checks we use coal futures, also

obtained from NYMEX, specifically the Central Appalachian Contract. Lastly, we use daily WTI crude oil

prices from Cushing, Oklahoma, recorded by the US Energy Information Administration as a measure of

the oil spot price. Oil spot price data allow us to document the evolution of the stickiness of shocks to the

oil spot price during the sample period and test for reverse causality.

Market Controls

Oil prices respond to macro-economic shocks, so throughout our analysis we generally control for daily

changes in the S&P 500 index, a stock market index that tracks the performance of the 500 largest publicly

traded companies in the US. In a sensitivity check, we use S&P 500 index futures to control for expected

economic growth. Unlike oil futures, where actively traded maturities are available up to 24 months into the

future, the furthest maturity for S&P 500 contracts is 8 months.6

Oil Production and Stores

To support our claim that the observed oil price shifts are caused by supply rather than demand shocks, we

expand our analysis to include crude oil production and storage. We obtain weekly estimates from the EIA

of U.S. oil ending stocks excluding the strategic petroleum reserve as well as of U.S. oil field production.

Prediction Market on Probability of Climate Law Passing

Market beliefs on the probability that the US government would enact a cap-and-trade system for emissions

by the end of 2010 are obtained from prediction market contract prices from Intrade. A prediction market

contract is a bet on the realization of a particular event by a given date. If the event is realized by the

specified date in the contract, holders receive a dollar. If the event is not realized by the specified date,

holders do not receive anything. In an efficient market, the price of the betting market in cents should

equal the probability of the law passing. We use prediction market prices from Intrade from May 1, 2009 to

December 31, 2010. The end date is given by the contract, which was on the passage of a US climate bill by

the end of 2010. Specifically, the prediction market contract was for “A cap-and-trade system for emissions

trading to be established before midnight ET on 31 Dec 2010.” While the market did not explicitly cite

5For example, leading into the COP meetings in Paris where the Paris agreement was signed, the United States and China
announced a willingness to work together to solve this problem.

6We downloaded the oil futures, coal futures, and S&P 500 index from a Bloomberg Terminal in March 2023.
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the Waxman-Markey bill, prediction market participants were likely reacting to the Waxman-Markey bill,

legislation to limit economy wide greenhouse gas emissions in the U.S. (Meng 2017).

Internet Searches about Waxman-Markey and Court Cases

We pull daily Google Trends data for the search term “Waxman-Markey” during the period in which the

prediction market operated as well as the search terms “Urgenda v. Netherlands” and “Massachusetts v.

EPA” in the six months preceding each court cases’ verdict announcement.

For the prediction market analysis, Google Trends data provides an independent measure whether

Waxman-Markey was of general interest, which we use in a sensitivity analysis by restricting our sam-

ple to days with high search volumes, when it is more likely that belief updates occurred. Google Trends

data can only be downloaded at the daily level for a maximum period of nine months. Each Google Trends

data download is normalized based on the observations in the download. The day when the search term was

the most popular has an index of 100. A day during the period when the search term was half as popular

as the most popular day has an index of 50. Days with not enough search volume to determine the relative

popularity of the search term have an index of zero. We construct daily Google Trends data during the

period in which the Waxman-Markey prediction market operated, between May, 2009 and June, 2010, by

making three data queries. The first query covers days between May, 2009 and December, 2009, the second

covers October, 2009 to June 2010, and the third covers March to November, 2010. Using the period of

overlap between queries, we re-scale the indices such that the most popular day during the whole sample has

an index of 100.

Additionally, we use the Google Trends data regarding the court cases to isolate the days with the most

substantial information shocks regarding both court cases’ verdicts. Specifically, we focus our event study of

each court case on the day in which the court case peaked in popularity on Google in the months leading up

to and including verdict announcement. This approach for isolating information shocks is consistent with the

literature documenting the anticipation or impacts of environmental policy (McDermott et al. 2019, Carat-

tini and Sen 2019).

Measures of Policy Salience

We measure the salience of US renewable policy and international cooperation around climate using news

based indices from Noailly et al. (2021). Noailly et al. (2021) develop their indices by text-mining 15 million

articles published between 1981 and 2019 by the New York Times, Washington Post, Wall Street Journal,

Houston Chronicle, Dallas Morning News, San Francisco Chronicle, Boston Herald, Tampa Bay Times, San

Jose Mercury News, and San Diego Union Tribune. The authors identify articles pertaining to environmental

policy generally using a support vector machine algorithm trained on 2,464 labeled articles. To classify

environmental policy articles into sub-topics, Noailly et al. (2021) use topic modeling, an unsupervised

learning algorithm. The approach recognizes recurring patterns in the set of environmental policy articles,

creating groupings of articles that cover similar topics. The authors use this approach to construct twenty

five different groupings, two of which they made publicly available, renewable energy policy and international

climate negotiations. Articles classified as covering renewable energy policy include words/phrases such as

renewable energy, wind, solar, energy, turbine, energy, power, electricity, renewable, wind power, farm, solar

energy, turbine, etc. Articles classified as covering international climate negotiations include agreement,
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united, international, government, country, state, world, trade, president, European, Mexico, China, etc.

They construct news indices for environmental policy generally, renewable policy and international climate

negotiations by counting the number of articles in a given category each month and scaling the count by the

total monthly volume.

Noailly et al. (2021) document that both the international climate negotiations and renewable policy index

are predominantly associated with events that make US policy in these respective areas more stringent. For

example, major changes in the international climate negotiations occurred during the Rio de Janeiro Earth

Summit, the Kyoto Protocol signing, the Bonn Climate Change Conference, the Copenhagen Climate Change

Conference, Paris Agreement, Trump’s withdrawal from the Paris Agreement, and the Katowice Climate

Change Conference. Most of these events mark moments when international cooperation around climate

change strengthened, with the one exemption being Trump’s withdrawal from the Paris Climate Accord.

The renewable policy index is elevated during the Obama era, a period of strong support for renewables, and

peaks during deliberations around Bush’s National Energy Policy, the decision to build the first US offshore

wind farm, the announcement of the Green New Deal, Al Gore’s call for a move towards ending dependence

on carbon, First Solar and China’s agreement to build the largest photovoltaic power plant, investigations

into solar panel dumping by China, and the passage of Obama’s Clean Power Plan. Moreover, Noailly et al.

(2021) finds their index generally measuring environmental policy salience in the news is strongly correlated

with the OECD’s Environmental Policy Stringency Index for the US.7 Throughout our paper we generally

interpret increases in the international climate negotiations and renewable policy index as moments when

expected US policy became more stringent.

3 Empirical Strategy

We test theoretical predictions of the “Green Paradox” by linking daily changes in oil futures to daily changes

in market expectations around the probability that a cap-and-trade bill in the US will be enacted. If financial

markets expect climate change regulation to be more stringent in the future, resource owners will shift some

of the supply they can no longer sell in the future towards the present, thereby lowering both the spot

price as well as all futures prices with maturities between 1 and 24 months from today. Specifically, we are

able to test the following two predictions: an increase in the probability that a cap-and-trade bill will be

enacted (i) decreases prices and (ii) decreases prices by similar amounts for all futures contracts that are

actively traded, i.e., for maturities ranging from 1 to 24 months into the future. We support findings from

this analysis using broad trends in oil price shock persistence over the last three decades, examining the

association between oil price returns and climate policy salience over the last three decades with monthly

level data, and estimating oil price returns on days when news coverage peaked regarding historic climate

court cases. These supporting analyses speak to the external validity of our findings by testing for (i) the

pervasiveness of the “Green Paradox” throughout the last three decades and (ii) the “Green Paradox” against

actual changes in climate policy.

The stickiness of price shocks induced by climate change legislation is a key feature of the “Green Paradox”

that sets it apart from other temporary shocks whose effect phases out over time. We therefore begin our

7The OECD Environmental Policy Stringency Index measures the extent to which a country prices environmentally harmful
behavior explicitly or implicitly.
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empirical analysis by documenting correlations between the oil spot price and oil futures prices at different

points in time. This analysis serves two purposes. First, it provides descriptive evidence that the persistence

of oil price shocks has changed remarkably over time, with the highest persistence during years when climate

change legislation was debated. This is consistent with climate change legislation being a key factor of

uncertainty that induces persistent price shocks. Second, this analysis constructs an important baseline for

interpreting our causal results and motivation for robustness analyses.

As a second step, we continue our empirical analysis by documenting associations between oil price

returns and monthly measures of renewable policy and international climate negotiation salience in the

news. The stringency of future climate policy has been in continual flux in recent history. The “Green

Paradox” predicts that information shocks informing expectations around the stringency of future climate

policy should impact oil prices, i.e., information shocks indicative of more stringent future climate policy

should reduce prices today. As discussed in the data section, the news based indices predominantly track

events that strengthened future climate policy. Hence, the indices proxy for information shocks indicative

of more stringent future climate policy, and our analysis can provide suggestive yet compelling evidence of

a relationship between increases in the expected stringency of future climate policy and oil prices. More

generally, this analysis tests if the “Green Paradox” has been a pervasive phenomenon throughout the last

three decades.

Third, in our main analysis, we focus on US cap and trade policy deliberations in 2009 and 2010, a

particularly uncertain period in terms of future climate policy, to provide causal evidence of the “Green

Paradox.” Using high-frequency data, we link daily oil future returns to daily prediction market prices for a

contract tied to the passage of a US cap and trade policy. As in Meng (2017), we argue that price changes

in the prediction market approximate market expectations of the probability that climate regulation will be

passed.8 We would expect increases in prediction market prices to be linked with negative oil future returns

on average.

Finally, we test if the surprising Urgenda v. Netherlands verdict and the prevailing news that Justice

Kennedy, the key swing vote, would support the states in Massachusetts v. EPA were associated with

anomalous negative oil future returns using an event study framework. The Urgenda v. Netherlands ruling

indicated future climate regulation in the Netherlands would become more stringent, and people speculated

that the verdict laid the foundation for more stringent climate regulation in Europe more broadly. The

Massachusetts v. EPA ruling stipulated that the EPA has the power to regulate greenhouse gas automobile

emissions. The ruling did not force the agency to regulate said emissions; however, people speculated that if

the EPA failed to regulate greenhouse gas emissions, the agency would face additional legal battles. Thus,

both the Urgenda v. Netherlands verdict and the prevailing news that Justice Kennedy would back the

states created unexpected shocks in market expectations around future climate regulation stringency, giving

us the opportunity to test for evidence of the paradox in response to information shocks. In both cases, we

would expect the consequential new information revealed by the verdict announcement and the media to be

linked with negative oil future returns.

Oil Price Shock Permanence In a first step, we link daily changes in oil futures to daily changes in oil

spot prices. As described in the data section, the analysis includes oil futures with maturities ranging from

8Meng (2017) pioneered the use of prediction markets for climate change legislation in a different context to derive the
abatement costs of climate legislation.
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1 to 24 months into the future, i.e., for each day we have 24 different future returns. The regression equation

is:

∆yft = αfm(t) + βf ∆pt + γf ∆zt + ϵft (1)

We regress ∆yft, the percent change in the future price9 on day t for the oil future with a maturity of

f = 1 . . . 24 months into the future on the percent change in the oil spot price ∆pt on day t. The main

coefficients of interest are βf , the association between the spot price and oil future f. We allow the coefficients

to vary by maturity f to show how spot price shocks impact expected prices at various points in the future.

We control for changes in the overall economy by including ∆zt, the percent change in the S&P 500 index

on day t. The effect of the S&P 500 is also allowed to vary by future (maturity) f . Finally, we include

future-by-month fixed effects αfm(t), thereby focusing the identification on changes in a particular oil future

f that occur within a given month m(t). Errors ϵft are clustered by day allowing the returns of the 24

different maturities to be correlated as they might be influenced by the same market events. In a sensitivity

check in the appendix we allow for different clustering options and fixed effects.

We run the analysis for different subsets of days. The degree to which climate change legislation was

at the forefront of political agendas varied greatly over the last three decades. As discussed previously, we

expect oil price shocks to be more permanent during periods when climate regulation is under consideration

by major governing bodies, as the passage of such legislation would permanently alter future price paths.

Thus, we replicate the analysis described by equation (1) for periods that begin every 5-years, starting in

1990 to see if oil price shock stickiness varied with uncertainty around future climate legislation.

Climate Policy Salience Unlike the futures data, which is available daily, the climate policy index is

available monthly. We hence switch the analysis to a monthly level in an analogous fashion. We link

monthly oil futures returns to monthly measures of renewable policy and international climate negotiation

salience, a proxy for information shocks about future climate policy. For easier interpretation, the monthly

news indices are standardized to be mean zero and to have unit standard deviation. The news indices report

monthly salience measures between 1981 and 2019. The international climate negotiation index peaks during

the Copenhagen Climate Change Conference at 7.5 standard deviations above the average and reaches its

second highest peak during the adoption of the Paris Climate agreement at 6 standard deviations above

average. The renewable policy index peaks when a group of US based companies first accused China of

dumping solar panels in the US at 2.9 standard deviations above the average. The regression equation is:

∆yfm = αfq(m) + β Im + θ Rm + λ Em + γf ∆zm + ϵfm (2)

∆yfm reflects the percent change in the future price at the end of month m relative to the end of month

m−1 for the oil future with a maturity of f = 1 . . . 24 months into the future. We regress the percent change

in the future price on standardized measures of three news-based indices: Im, Rm, and Em.10 The main

coefficients of interest are β and θ, the effect of a one standard deviation in the salience of international climate

9We use the percent change in the closing price relative to the previous closing price.
10Unlike our other analyses, we do not first-difference these indices. While prices are first-difference stationary, the environ-

mental policy index is trend stationary. For financial data, the daily data incorporate new information on that day. For the
news indices, it is less clear when exactly the market learned about developments. Recall that we are including maturity-by-
quarter fixed effects and hence limit the analysis to the three monthly observations within a quarter, but unlike the case of
first-differencing, we also use the comparison how much the third month differs from the first.
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negotiations (Im) and renewable policy (Rm), respectively, on oil future returns. We include environmental

policy salience generally (Em) to control for general environmental policy salience and as a placebo.11 As

in equation (1), we control for changes in the overall economy by including ∆zm, the percent change in

the S&P 500 index at the end of month m relative to the end of month m − 1. The effect is allowed to

vary by future (maturity) f . Finally, we include future-by-quarter fixed effects αfq(m), thereby focusing the

identification on changes in a particular oil future f that occur within a given quarter q(m). Since we have

monthly data, there are three observations per quarter for each maturity.

Cap & Trade Prediction Market We link daily changes in oil futures to daily changes in prediction

market prices, which capture the market’s assessment of the probability that a US climate bill would pass.

During the prediction market’s lifespan, the contract price ranged from 0 to 57 cents, implying the market

predicted between a 0 and 57% chance that the US government would enact a cap-and-trade bill by the end

of 2010. The price peaked at 57 cents when the House passed the Waxman-Markey bill. The price increased

by 10 cents when a cap-and-trade bill in the Senate garnered support from some Republicans, including

Lindsay Graham of South Carolina (Meng 2017). While the main bill that was discussed in 2009-2010 was

the Waxman-Markey bill, the prediction market contract was for the event that any cap-and-trade bill passed

by the end of 2010. We include returns between May 1, 2009 and Dec 31, 2010, as these are the dates with

prediction market prices. The regression equation for the pooled effect is:

∆yft = αfm(t) + β ∆xt + γf ∆zt + ϵft (3)

As in equation (1), we use ∆yft, the percent change in the future price on day t for the oil future with

a maturity of f = 1 . . . 24 months into the future. We now regress the percent change in the future price on

the change in the prediction market probability ∆xt of a cap-and-trade bill passing12 on day t. The main

coefficient of interest is β, the effect of changes in the probability of the bill passing on oil future returns.

All other controls and clustering are identical to equation (1).

We run the analysis for different subsets of days. Oil futures might be especially responsive on days

when there are major changes in the probability of a bill passing and hence major changes in the price of

the prediction market. We conduct the analysis for all days as well as for subsets of days when the absolute

change in the probability of a climate bill passing exceeds various cutoffs ranging from 1 to 5 cents. In other

words, for a given subset we include only days when |∆xt| ≥ c, with c ∈ {0, 1, 2, 3, 4, 5} cents. We explore

whether β increases in magnitude for “major” belief updates, i.e., as c increases, e.g., because the market is

more sensitive to major updates. In an additional auxiliary analysis, we further restrict subsets using Google

Trends for the search term “waxman markey.” Including the Google Trends filter restricts the analysis to

shocks that were broadly recognized by the general population. We conduct the analysis for subsets of days

when the absolute price change exceeds various cutoffs and when the Google Trends index on the day of

the absolute change or the day after exceeded a given cutoff as well. The Google Trends filter is applied to

the day of and day after a price shock as the prediction market may internalize new information faster than

11We do not expect environmental policy salience on average to impact oil prices because on average most environmental
policy news is not about climate policy (Noailly et al. 2021).

12The prediction market values range from 0 to 100 cents, which in an efficient market should reflect the probability of the
bill passing. We take the difference in the closing price relative to the previous closing price, thereby obtaining the change in
the probability of the bill passing.
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the general population. Finally, we present a sensitivity-check where we further limit the analysis to days

when the trade volume exceeds the median, ensuring the prediction market was liquid enough to incorporate

updates in the probability of the bill passing.

We further relax the linearity and symmetry assumption of oil prices’ response to prediction market

shocks, modelling it using restricted cubic splines g (∆xt) with knots at -5, -2, 0, 2, and 5 percent. Such an

approach forces the response to be linear below the minimum knot (-5) and above the maximum knot (+5),

but uses third-order polynomials in between. We expect the effect of a positive prediction market shock on

oil prices to be negative and a negative shock to be positive; however, this approach allows the response to

be asymmetric. A positive shock could have a negative effect while a negative shock can have no effect. The

equation becomes:

∆yft = αfm(t) + g (∆xt) + γf ∆zt + ϵft (3a)

Returning to the linear model, as in our analysis of oil shock persistence, we allow for heterogeneity of the

effect β by oil future maturity, i.e., βf , while all other controls remain identical to equation (3). The modified

regression equation is:

∆yft = αfm(t) + βf ∆xt + γf ∆zt + ϵft (3b)

In the appendix, we test for robustness to the inclusion of the oil spot price. Lower oil prices are associated

with negative future returns and could increase the likelihood that the bill will pass. Higher oil prices are

associated with positive future returns and could decrease the likelihood that the bill will pass. We control

for the oil spot price to assuage concerns that reverse causality drives the paper’s results. In another test we

include the yield curve for S&P 500 futures, specifically, the change in the difference between a future with

8 months maturity and the current index. This test controls for confounding variation in expected economic

growth, e.g., if the climate bill was part of a larger set of regulation that induce short to medium-term

slowdown in growth that would reduce the price of oil through a reduction in demand.

Historic Climate Court Cases We examine oil future returns on the days when major news regarding

historic climate court cases broke. Specifically, we analyze the abnormal return on the day Urgenda v.

Netherlands was rendered (June 24, 2015) and the day when the news broke that Justice Kennedy would

likely back the states suing the EPA (December 6, 2006).

Urgenda v. Netherlands was the first successful climate liability suit brought under human rights and tort

law. In the ruling released on June 24, 2015, the judge acknowledged that climate change’s threat was severe

and stated that under Dutch law a threat of damage suffices for injunctive relief. The verdict stated that

by the end of 2020, the Dutch state had to reduce greenhouse gas emission by at least twenty five percent

relative to 1990 levels. The Urgenda v. Netherlands ruling was unexpected, notable and historic. In the six

months leading up to the verdict announcement, the court case’s Google Trends index rarely exceeded zero

indicating there was not enough search volume to determine the court case’s relative popularity. On only six

days, the Google search index exceeded zero reaching at most one third the level of popularity reached on

June 24th. On the 24th, the New York Times article “Ruling Says Netherlands Must Reduce Greenhouse

Gas Emissions” quoted Marjan Minnesma, the director of Urgenda, saying “Everybody in the legal scene

said, ‘This will never happen — this is just a P.R. stunt.’ This is not a P.R. stunt.” The same article

quoted Michael Gerrard, director of the Sabin Center for Climate Change Law at Columbia University,
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saying “I think this will encourage lawyers in several other countries to see if they have opportunities in

their domestic courts to pursue similar litigation.” People predicted the verdict set a precedent that other

countries subject to the European Convention would follow. Given the Dutch share of global fossil fuel

consumption is minimal, the estimated effect is driven by an update in the probability that other countries

would follow suit. There have subsequently indeed been similar suits, some of them successful, e.g., a suit

brought against the sate of Montana.

Massachusetts v. EPA was a landmark case in which states and environmental groups argued that the

EPA was obligated under the Clean Air Act to regulate carbon dioxide in automobile emissions. The case was

argued on November 29, 2006 and decided on April 2, 2007. Similar to the Urgenda v. Netherlands ruling,

people predicted the Massachusetts v. EPA verdict would be followed by numerous additional climate cases,

including a case challenging the EPA’s refusal to regulate power plant carbon dioxide emissions.13 Unlike the

Urgenda v. Netherlands ruling, the likely outcome in the Massachusetts v. EPA case was actively discussed

before the ruling, and the eventual ruling was arguably expected beforehand. In the six months leading

up to the verdict announcement, the court case peaked in popularity on Google Trends on December 6,

2006, when headlines read “Key Justice Appears to Back States’ Standing to Sue in CO2 Case.” Numerous

news articles published on the 6th, found using a Lexis-Nexis search on the terms “Massachusetts v. EPA”,

documented how Justice Kennedy, the key swing vote for the case, appeared to be backing the states suing

the EPA. This is the date when the market should have incorporated new information, not the date of the

eventual ruling, highlighting again the importance of accurately identifying when market beliefs update.

In both instances, we do not have a direct estimate on the market update in the probability that ei-

ther court case would be settled in favor of restricting future fossil fuel use. Moreover, in the Urgenda v.

Netherlands ruling, we do not have an estimate of the market’s belief that other countries would follow suit.

Nor do we have an estimate of the market’s belief that the Massachusetts v. EPA ruling would be followed

on by additional court case verdicts enabling additional fossil fuel use restrictions in the US. Hence, our

coefficient estimates for the event studies in response to both court cases are not directly comparable to our

prediction market analysis, in which we are able to identify the effect of a 100% change in the probability

of Waxman-Markey by scaling by the change in prediction market probability. Our event study estimates

should be scaled (divided) by the change in the probability to be comparable, a statistic we do not observe.

Our analysis of court cases provide another source of identification using discrete events documented by

Google Trends data rather than a change in probability documented by a prediction market. Some researchers

have levied concern that prediction markets do not reliably reflect market beliefs (Manski 2006, Fountain

and Harrison 2011, Lemoine 2017). Our analysis offers a cross-check using major news updates without

having to rely on prediction markets: we are interested in the sign and significance of the coefficient, but the

magnitude of the coefficients requires further assumptions to be comparable to our primary analysis.

As in the previous equations, the analysis includes oil futures with maturities ranging from 1 to 24

months. We construct the abnormal returns on the Urgenda v. Netherlands verdict announcement date,

June 24, 2015, and the day when the prevailing news regarding the Massachusetts v. EPA case suggested

Kennedy, the swing vote, would support the states suing the EPA, December 6, 2006. As documented in

Figure A1, the permanence of oil price shocks varied significantly between 1990 and 2022. We compare

returns on June 24th, 2015 and December 6, 2006 to five different subsets of days to demonstrate robustness

13https://www.nytimes.com/2007/04/03/washington/03scotus.html
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to these heterogeneous comparison groups. The regression equation for the pooled effect is:

∆yft = αfm(t) + β 1v + γf∆zt + ϵft (4)

We regress ∆yft, the percent change in the future price on day t for the oil future with a maturity of

f = 1 . . . 24 months into the future on a dummy 1v for June 24, 2015, the day the Urgenda v. Netherlands

verdict was rendered. The main coefficient of interest is β, the effect of the verdict announcement on oil

futures. Other controls and clustering are identical to the previous equations. We conduct an identical

analysis for the Massachusetts v. EPA court case replacing the dummy 1v with 1k for December 6, 2006,

the day the news that Justice Kennedy would support the states’ position.

We subsequently allow again for heterogeneity in the effect β by oil future maturity, i.e., βf , while all

other controls remain identical to equation (4). The modified regression equation is:

∆yft = αfm(t) + βf1v + γf∆zt + ϵft (4a)

4 Empirical Results

Oil Price Shock Permanence Figure 2 highlights the persistence of oil spot price shocks on returns of oil

futures across maturities. We regress daily changes in oil futures on the daily change in the spot price while

accounting for daily changes in the S&P 500 as outlined in equation (1). The x-axis indicates the maturity

ranging from 1 to 24 months into the future, while the y-axis gives the point estimate as well as the 90%

confidence band. The displayed results reflect the average shock persistence, the combination of all shocks,

both transitory shocks as well as permanent shocks. Estimates using all days between 1990 and 2022 are

shown in dark blue. Contracts with a maturity in one month have a coefficient of 0.95, i.e., on average 95% of

the change in the daily oil spot price is reflected in the futures price with a one-month maturity. On the other

extreme, only 13% of the change in the daily oil spot price is reflected in the future price with a maturity 24

months (2 years) away. Maturities in between decay roughly exponentially, suggesting that on average spot

price shocks during the sample period were temporary and phased out over two years. The light blue (cyan)

line replicates the same analysis using only days between May 2009 and December 2010, days when the

cap-and-trade prediction market was active. During this period the House passed Waxman-Markey and the

Senate deliberated a very similar bill. For this period, the coefficient is 0.90 for a one-month maturity and

0.58 for a 24-month maturity. In other words, when climate legislation was under consideration, shocks to

the spot price were on average much more persistent, phasing out much slower relative to the whole sample.

This is consistent with the theory of the “Green Paradox”, as climate change legislation should reset the

entire expected price path and lead to permanent rather than transitory changes. Uncertainty around future

legislation should yield stickier price shocks rather than transient shocks.

Appendix Figure A1 further splits the sample period into five year intervals ranging from 1990-1994 to

2015-2019, as well as a 3-year end period 2020-2022. Shock persistence increases from 1990-1994 to the

2010-2014 period, when climate legislation was most actively discussed. The persistence slightly declines

again in 2015-2019, before collapsing in 2020-2022, as COVID-related supply disruptions lead to short-term

price fluctuations – the oil price was briefly even negative when storage levels reached capacity. Notably,

shocks were most persistent during the period when cap and trade policy was heavily considered by the US
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Federal Government and the European Union established an emission trading system. The average decay in

the translation of spot price shocks to changes in futures with various maturities sets an important baseline

for following analyses when we again present results and how they vary across maturities.

Climate Policy Salience Table 1 highlights the average effect of climate policy salience in the news,

generally a strong proxy for moments when future climate policy strengthened, on oil future returns. Specif-

ically we regress monthly changes in oil futures prices on three monthly indices measuring the prevalence

of articles covering environmental policy generally, international climate negotiations, and renewable policy,

as outlined in equation (2). Indices are standardized to be mean zero and have unit standard deviation

for interpretability. We display coefficient estimates β, θ and λ that are jointly estimated. The first row

displays β, the effect of a one standard deviation increase in the international climate negotiations index

on future prices. The second row gives θ, which reflects the effect of a one standard deviation increase in

the renewable policy index on future prices. Finally, λ displayed in the last row, reflects the effect of a

one standard deviation increase in the environmental policy index on future prices. Columns differ in the

included controls. The first column includes only quarter by year fixed effects. The final column includes

quarter by year by maturity fixed effects and controls for monthly changes in the S&P 500 index.

We find a one standard deviation increase in the international climate negotiations index is associated

with a 0.918-0.975% decrease in expected oil prices for various maturities over the next two years as shown

in the first row of Table 1. For reference, the Paris Climate agreement is associated with an index six

standard deviations above the mean. While only suggestive, this finding is consistent with “Green Paradox”

predictions. Moments demonstrating international cooperation around climate change enforce expectations

that climate policy will be more stringent moving forward, increasing production in the near term and

decreasing prices.

We find a one standard deviation increase in the renewable index is associated with a 2.57-2.72 increase

in expected oil prices across maturities as shown in the second row of Table 1. For reference, First Solar’s

signing of a memorandum with China to build the world’s largest solar power plant is associated with a

Renewable index of 2.75 standard deviations above the mean. Notably, the estimates have the opposite

sign from the international climate negotiations index. What is the rational? There are two effects at work

that move in opposite direction. On the one hand, renewable policies that lead to technological progress,

ultimately lowering backstop prices, should decrease oil prices in the short-run as the increased competition

with renewable technology in the future shifts oil supply to the present. On the other hand, if the passage

of renewable legislation is seen as a substitute for climate legislation, thereby lowering the probability of

future fossil fuel restrictions, it should increase the oil price today as market participants anticipate less

restrictions in the future. The observed positive coefficients on the renewable index suggests that the latter

effect dominates the former. Our finding implies that oil producers do not view current advances in renewable

policy as a threat to future oil demand but instead as a mitigating measure reducing threats of future limits

on oil consumption as they reduce the likelihood of more stringent climate policy.

One might be concerned about reverse causality – higher oil prices, associated with positive oil future

returns, could increase the probability of renewable policy passing leading to a positive correlation between

renewable policy salience and positive oil future returns. Table A1 presents a sensitivity analysis to the

results reported in Table 1 where we control for the oil spot price in addition to the controls included in the
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main specification. In this sensitivity analysis, we find a one standard deviation increase in the renewable

index is associated with a 2.39-2.56 increase in expected oil prices for maturities over the next two years in

the second row of Table A1, which is very similar to our baseline. This robustness makes a reverse causality

story unlikely.

Finally, we find that our placebo measure, the general environmental policy index, is not significantly

correlated with oil prices as shown in the third row of Table 1. The environmental policy index tracks the

salience of environmental policy generally. From 1981-2000, the most prevalent topics covered by the index

include water and air pollution as well as court cases and clean ups (Noailly et al. 2021). Once controlling for

the salience of international negotiations and renewable policy, the index predominantly reflects the salience of

non-climate environmental policy in the news proxying for moments when non-climate related environmental

policy became more stringent. Increases in the stringency of non-climate related environmental policy should

have no effect on oil prices, except through the indirect effect if they are to limit economic growth and hence

change the demand for oil. The resulting null effect is reassuring.

Cap & Trade Prediction Market Table 2 highlights the average effect of changes in the probability of

a cap and trade policy passing on expected oil prices, oil futures contracts that would have expired before

the policy entered into force. Specifically, we regress daily changes in oil futures prices on daily changes in

prediction market prices, a market-based measure of the probability that a climate bill passes, as outlined

in equation (3). We display coefficient estimate β, the effect of changes in the prediction market on future

prices, while we suppress other coefficients (future-by-month fixed effects and future-specific controls for the

movement of the S&P 500).14 Columns differ in what days are included in the regression. The first column

in both panels use all days between May 2009 and December 2010, the period when the prediction market

was active. A coefficient of -3.43 suggests that changing the probability of the bill passing by December 2010

from 0% (certainly not passing) to 100% (definitely passing) decreases oil futures prices by 3.43%. Recall

that the prediction market contract is on a climate bill passing by the end of 2010, so market participants

might still expect a bill to pass at a later point. The estimated coefficient is hence for a climate bill net of

later subsequent expected climate bills. Nonetheless we find a sizable effect of 3.43 percent.

The remaining columns of Table 2, Panel A restrict the sample to days when the absolute change was

at least 1, 2, 3, 4 or 5%, respectively, i.e., when the prediction market saw increasingly major updates.

Accordingly, the number of days in the analysis successively decreases, but the coefficient estimate increases

in magnitude from -3.43 in column (1) when we include all days to -7.08 in column (6) when we use only

days that had at least a 5% change in the prediction market price. We would expect the oil market to be

especially responsive to major events, e.g., when Republican Senator Lindsay Graham withdrew his support,

and we would expect the oil market to be less responsive to smaller day-to-day changes in the probability of a

bill passing as small fluctuations might be a result of round number bias and the bid-ask spread of a market

with limited liquidity. Table A2 documents the sensitivity of the results in Table 2, Panel A to various

clustering options. Our baseline approach generally results in the most conservative significance levels, i.e.,

widest standard errors.

Panel B adds an additional restriction based on internet search volume. We require that the Google

Trends index for the search term “waxman markey” exceeded 1, 2, 3, 4, or 5 in absolute terms.15 We look

14Figure A2 displays the evolution of the sensitivity to the S&P 500 over time.
15Recall that the trend data is relative to the most active day, which has a value of 100. An index of 2 is hence equivalent to
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at the search volume on the same day and next day, as financial markets tend to react quickly to emerging

news and the general population may react slightly slower. The combined restriction on both the prediction

market prices and internet search volume focuses on days when the prediction market saw increasingly major

updates that were reflected in Google searches. Accordingly, the number of days in the analysis successively

decreases, but the coefficient estimate increases in magnitude again from -3.43 in column (1) when we include

all days to -6.99 in column (6), which is rather close to -7.08 in Panel A. Further restricting our sample to

events that were salient both on Google and in the prediction market yields similar results.

The increase in the estimated coefficient when we limit the days to major events is inconsistent with

a story of reverse causality, where higher oil prices, associated with positive oil futures returns, make the

passage less likely. As outlined in Meng (2017), major prediction market movements were associated with

politicians joining or abandoning the bill after negotiation rounds that were scheduled in advance. Hence,

their timing was unlikely to have aligned with daily oil price changes. Moreover, public statements about

why politicians joined or abandoned the bill do not mention contemporaneous oil prices. The New Yorker

had a background story16 that outlined the key events that led to the unraveling of the coalition supporting

the climate bill. Oil prices as well as oil price changes are never mentioned. Rather political events that are

not related to oil prices caused most fluctuations in the probability of the bill passing. Table A3 lists news

stories for the 26 days where prediction market prices changed by at least 5%, i.e., the days used in column

(6) of Panel A in Table 2. While we do not know what exact news the prediction market responded to,

positive changes are usually associated with news stories in which the bill’s sponsors speak up in its support,

while negative changes are associated with opponents voicing their dissent. These events sometimes occur

on consecutive days with opposite signs. Importantly, the timing of these events is unlikely to be related

to day-to-day oil price fluctuations, but rather the result of committee meetings that were scheduled days

in advance. We present an additional check for reverse causality in Table A4: we test whether controlling

for the oil spot price changes our findings. Lower (higher) oil prices are associated with negative (positive)

future returns and could increase (decrease) the likelihood that the bill will pass. If reverse causality drives

the observed results, we would expect the main estimated effect to be lower once we control for the oil spot

price. However, the association persists even when we control for the oil spot price, particularly when we

limit our sample to political events that are not related to oil prices, i.e., days when the prediction market

price changed by at least 4%.

Figure 3 relaxes the linearity and symmetry assumptions by estimating a flexible response function using

restricted cubic splines from equation (3a) using all observations, i.e., the data from column 1 of Table 2.

The green histogram displays the density of the prediction market movements – there is a clear mass point

at zero, i.e., days where the prediction market had no price change. The spline implementation forces the

response of oil prices to prediction market movements to be linear below the lowest knot (-5) and above

the highest knot (5). However, within [−5, 5], the relationship is allowed to evolve flexibly using third-order

polynomials, yet the linearity assumption still holds reasonably well between [-5,-1] and [1,5]. For small

changes in probability [−1, 1] the linearity assumption does not hold as well, which might not be surprising

as the market has limited liquidity, there is a bid-ask spread, and prices are predominantly discrete integer

values. In this sense, changes smaller than one might not reflect belief updates and may lead to attenuation

2% of the search volume relative to the most active day.
16“As the World Burns: How the Senate and the White House missed their best chance to deal with climate change,” October

11, 2010 issue.
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bias. These results support our choice to use a linear model, assuming symmetric effects of positive and

negative shocks, and to focus on estimates that restrict our sample to price changes larger than 1.

Table A5 limits the analysis to days with above-median trade volume, restricting the sample to days

when the contract is actively traded, i.e., the market is liquid enough to accurately reflect the market’s

assessment.17 This sensitivity check also ensures that a price jump is not the result of one “rogue” trade

(sticky-finger) but rather occurred due to active trading. When we impose the above-median trade volume

restriction, the estimated coefficients slightly increase in magnitude relative to Table 2. As in our primary

analysis, columns vary in the sample of days we use to estimate the effect of prediction market price changes

on oil futures. Column (1) does not restrict the sample based on the absolute change in the prediction market

price, while column (2) restricts the sample to days when the absolute change was at least 1%. In addition,

we restrict the sample used in all columns to days with above-median trade volume. Imposing this restriction

greatly reduces the number of days (clusters) in column (1), as days with zero price change often have zero

trade volume. While the point estimate remains rather robust, the significance level drops somewhat. As

we restrict the sample to days with absolute price changes above a certain threshold in columns (2)-(6),

requiring an above-median trade volume does not significantly alter the set of included days: larger price

jumps go together with above-median trade volume as new information gets priced in.

To further assuage potential concerns of limited liquidity in prediction markets, Table A6 presents another

sensitivity check where we use a step function, i.e., discretize the response function by using a dummy variable

if prediction market changes exceed a specified threshold. Manski (2006), Fountain and Harrison (2011),

and Lemoine (2017) caution against interpreting prediction market prices as accurate reflections of market

expectations due to their limited liquidity among other concerns. Our sensitivity check attempts to glean

objective information from the prediction market without relying too heavily on prediction market price levels

for identification. In other words, we only use the fact that predictions markets saw a significant change,

and do not use the exact amount it changed. The estimated coefficient of interest reflects the average effect

of a shock on oil futures prices. To make estimates comparable to our main results in Table 2, we scale the

coefficient by 100 divided by the average prediction market shock. Hence, estimates give the change in oil

price in percent for a 100% change in the probability of the bill passing. Columns differ again in the cutoff

c used to identify shocks. Panel A only applies the cutoff to prediction market price changes to identify

information shocks while Panel B applies the cutoff to price changes and the Google Trends index. All 10

estimated coefficients remain negative and of similar magnitude to our main results displayed in Table 2,

yet these estimates are noisier and several are no longer statistically significant, which is not surprising

as the dummy specification imposes all days above the threshold to have the same level effect. Moreover,

as the cutoff increases in stringency, the control group (days below the cutoff) include increasingly large

shocks, attenuating estimates. Taken together with the linearity displayed in Figure 3 and the significant

results in Table 2, changes in prediction market prices, at least outside the [−1, 1] range, convey meaningful

information that the oil futures market responds to.

Table A7 conducts a falsification check where we purposefully offset the prediction market prices by one

period into the future, e.g., regress today’s oil future return on tomorrow’s change in prediction market

prices.18 None of the coefficients are statistically significant and the sign switches from negative to positive

17We thank Derek Lemoine for sharing the trade volume data with us, which is highly rightward skewed: the highest trade
volume is 2901, while the median for days when trades occurred (dropping days without any trade) is 12.

18Recall that we construct daily returns using consecutive closing prices. In most cases the period between consecutive closing
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for more than half of the estimates. We see this as additional evidence that the daily changes in prediction

market prices convey significant information, at least in the eyes of oil futures’ traders that respond to

them. Our results are not driven by periods of high versus low prediction market prices, as overall prediction

market price levels are preserved when offsetting the information by one day. Instead, our results are driven

by day-to-day changes in prediction market prices.

Another possible concern might be that daily changes in the expectation of economic growth impact both

the prediction market as well as oil futures. For instance, a slowdown in economic growth, e.g., a recession,

leads to a reduction in the oil price and an increase in the probability that the climate bill would pass.

This would be a demand-driven rather than a supply-driven response. Table A8 therefore not only includes

changes in today’s S&P 500 as a control but also changes in the yield-curve, which we define by the difference

between the S&P 500 future with a maturity in eight months and the present day index value.19 Controlling

for daily changes in this yield curve has no discernible effect on the estimated coefficients, making a story

that changes in expected future economic growth drive our results unlikely. Robustness to controlling for

the yield curve also confirms our earlier argument that the events with major prediction market movements

shown in Table A3 were mostly driven by political events. The change in the S&P 500 index on the 26

days, in which the prediction market changed by at least 5%, has a positive but insignificant correlation with

changes in prediction market prices. This is inconsistent with a story where changes in economic growth

lead to changes in oil demand and prediction market prices – such a story implies a negative correlation.

Finally, Table A9 further aims to distinguish between demand and supply shocks. The “Green Paradox” is

a supply shift, which implies that prices and storage levels should move in the same direction. If future climate

legislation shifts supply to the present, both the current price and current storage levels should decline as the

optimal allocation over time is adjusted. The reduced price increases current-period consumption, which is

achieved through depleting storage levels as production cannot be increased in the very short-term. On the

other hand, demand shocks generally lead to an inverse relationship between oil prices and storage levels.

An inward shift in demand reduces prices but leads to a buildup in storage levels, as production cannot be

adjusted in the short-term. While oil price data is available on a daily level, storage and production numbers

are only available at the weekly level. As a first step, we therefore replicate the regression results from Panel

A in Table 2, switching to a weekly level in Panel A of Table A9. The coefficients are of similar magnitude

to our main specification but are no longer statistically significant. Panel B of Table A9 replicates the same

analysis for oil storage levels rather than price levels. The regression coefficients are again negative with one

exception, although again not statistically significant. At the same time, the consistent signs between the

price and storage response imply that supply factors are more likely to be the driver than demand factors, as

the latter would imply opposite signs. Finally, Panel C of Table A9 examines production changes. We find

coefficients that are smaller in magnitude and repeatedly switch signs. This is consistent with the finding

that adjusting short term oil production is difficult (Anderson, Kellogg and Salant 2018).

Figure 4, Panel A and B present the effect of changes in the probability of a cap and trade policy

passing on oil future prices, allowing the effect to vary across maturities. The different cutoffs of Table 2

are now shown in different colors. As in Table 2, Panel A applies the cuttoffs only to prediction market

prices and Panel B applies the cutoff to prediction market prices and the Google Trends index. In both

prices is one day, except for holidays or weekends where the period covers two or three days between consecutive closing prices.
19While oil futures are traded up to 24 months into the future, the longest maturity for S&P 500 futures is 8 months into the

future and we hence rely on it.
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panels, the x-axis displays the results by maturity, while the y-axis gives the point estimates as well as the

90% confidence band. Similar to the pooled analysis, the coefficients become larger in magnitude when the

data is limited to days when the prediction market price changed by at least 4% (orange and red color in

Figure 4 or column (5) and (6) in Table 2). Remarkably, estimated coefficients weakly increase in magnitude

for maturities that are further into the future. Figure A5 underscores this pattern; the effect of deviations

in prediction market prices is smallest on the oil spot price relative to oil price futures with maturities

further into the future. This pattern is in sharp contrast to the average relationship between oil spot price

shocks and oil futures, where shocks phase out over time as documented in Figure 2. Price adjustments

associated with prediction market fluctuations are not phasing out but rather phasing in. This is consistent

with Anderson et al. (2018)’s finding that oil production from existing wells do not respond to oil prices in

the short-term due to physical constraints, i.e., closing an existing producing well is costly, explaining why

oil prices briefly turned negative during COVID shutdowns. Letting the oil flow, once a well is tapped, is

usually the most economical irrespective of short-term price dynamics. Kellogg (2014) shows that drilling

decisions react quickly to changes in market expectations, but it again takes a while for the oil to flow.

Notably, development of infill wells respond to oil future contracts with 18 months to maturity. While the

standard Hotelling model suggests that the price path will reset right away in response to a climate bill

passing, physical constraints (both in closing existing wells and in opening new ones) imply that it can take

a few months for adjustments to be realized, explaining why the coefficients get larger in magnitude for

maturities that are further into the future. The overall effect of the climate legislation shock needs time to

materialize as new oil production cannot be turned on or off overnight. That said, short-run adjustments

can be made through altering the amount of oil in storage, which may reconcile why we see expected oil

price changes in as little as one month.

Table A10 replicates the analysis for coal futures prices. We again regress daily changes in futures prices,

this time from coal contracts, on daily changes in prediction market prices, a market-based measure of the

probability that a climate bill passes. The relationship is not statistically significant when we use the full

sample to estimate the effect in column 1. We find that changing the probability of the bill passing by

December 2010 from 0% (certainly not passing) to 100% (definitely passing) decreases coal futures prices by

1.02%. As we restrict the number of days in the analysis, to days when the absolute change in prediction

market prices exceeded increasingly restrictive cutoffs, the coefficient estimate increases in magnitude from

-1.02 in column (1) when we include all days to -5.50 in Panel A, column (6) when we include only days that

had at least a 5% change in the prediction market price. The coefficient further increases to -8.45 in Panel

B, column (6) when we include only days that had at least a 5% change in the prediction market price and

a Google Trends index of at least 5. When we control for the oil spot price the coefficient peaks at -9.25 in

column (6) of Panel B in Table A11. In other words, we obtain similar percent effects for coal as for oil in

Table 2 when we focus on the days with major updates (right columns of Tables), but not if we include days

with smaller updates (left columns of Tables).

One possible reason why coal futures prices might show a lower responsiveness to prediction market

prices is that coal use in the U.S. already faces binding future constraints due to air quality regulation.

In nations such as the U.S. and Germany, coal has been phased out to improve local air quality. If air

quality regulation limit future coal use by more than the discussed domestic climate policy, the latter will be

non-binding and changes to its probability will not impact coal prices. That said, demand for coal in China

21



and India continues to grow. Assuming sufficiently low transport and trade costs, the paradox’s predictions

should still apply to coal. Particularly salient prediction market shocks (i.e., significant changes in prices

associated with increased Google search traffic) perhaps better reflect changes in market expectations of the

stringency of future global climate policy, hence having a more prominent affect on coal prices via the “Green

Paradox.”

In summary, our analysis of the cap & trade prediction market provides empirical evidence that oil

and coal markets respond to changing expectations about climate legislation that limit future fossil fuel

consumption. What are the policy implication of our findings? First, we can derive the effects if the

law had passed on global oil consumption. Using the average long-term demand elasticity of -0.6 from

Hamilton (2009, Table 3), the price coefficients in Table 2 imply that the passage of the cap and trade policy

considered in the US in 2009-2010 would have increased global oil consumption in that year, i.e., before its

binding constraints go into effect, by 2.0-4.2%20, accelerating the depletion of the resource. The projection

reflects the market’s best guess of how US regulation and follow-on regulation in other countries would

have shifted supply towards the present. Second, even though the legislation never passed, its discussion

temporarily altered the oil price path. We derive the additional oil consumption induced by climate policy

deliberation with a back-of-the envelope calculation. To begin, we derive the difference in the daily oil price

caused by climate policy deliberation relative to a counterfactual in which the bill was never discussed by

multiplying the price coefficient associated with the one month maturity in Figure 4 by the prediction market

price. We then compute the effect on oil consumption by multiplying the daily price differences with the

average short-term demand elasticity of -.26 from Hamilton (2009, Table 3). As the probability of the law

passing increases, the price is suppressed, leading to additional oil consumption, which in our back-of-the-

envelope calculation is simply taken to be the coefficient estimate times the prediction market prices times

the demand elasticity. As the probability of the law passing falls back to zero, the price path returns to the

trajectory of the initial undisturbed price path and our calculation attenuates. The total effect of climate

policy deliberations on consumption is then the sum of the temporary increase in oil consumption due to the

temporary price reduction for the time period for which the prediction market data is available, i.e., May 1,

2009 and Dec 31, 2010. The combined additional oil consumption is 7.7-26.69 million metric tons, equivalent

to 1-3 days of global oil consumption, highlighting how uncertainty about legislation, even if never passed,

can still influence fossil fuel consumption.

Historic Climate Court Cases In a final step, we derive the oil market’s response to surprising news

regarding two historic climate court cases. Specifically, we estimate the effect of the surprise Urgenda v.

Netherlands ruling on June 24, 2015 as well as the effect of prevailing news coverage on December 6, 2006

that Justice Kennedy, the swing vote, would support the states suing the EPA. The results for the event

study examining the abnormal return on June 24, 2015 as specified in equation (4) are shown in Panel A of

Table 3. The results for December 6, 2006 are shown in Panel B. As always, in both panels, we control for

overall market movements by controlling for the daily returns of the S&P 500, which are allowed to vary by

maturity of the future contract. Different columns use different time spans around the event day. While the

estimated coefficient is always for one day, June 24, 2015 in Panel A, and December 6, 2006 in Panel B, the

inclusion of further days around the event itself influences the coefficient estimates γf in equation (4) and

20We obtain this number by multiplying the coefficients from Table 2 by the demand elasticity.
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hence the prediction of the “normal” return on that day, which forms the basis for constructing the abnormal

return.21 In Panel A (Panel B), the first column uses the smallest time period, year 2015 (2006), while the

second column adds two years before and after 2015 (2006), and the third column adds an additional 2

years on either side. The fourth column uses all days between 1990 and the end of 2019 and hence stops

before the COVID-related disruptions. Finally, the fifth column also adds the COVID years. The estimated

effect of the Urgenda v. Netherlands ruling is always negative and significant ranging from -0.55 to -0.9.

The estimated effect of the news that Justice Kennedy would support the states suing the EPA is always

negative and significant ranging from -0.47 to -0.55.

Coefficients in Table 3 are not directly comparable to the point estimates in Table 2, which were scaled

to reflect the impact of a change in the probability of a US cap and trade bill from certainly not passing

(0% probability) by December 2010 to it passing with certainty (100% probability). As outlined above,

the Netherlands account for a small fraction of global emissions, and the bigger issue of the ruling was

whether courts in other countries would follow suit. Similarly, the Massachusetts v. EPA ruling stipulated

that the EPA had the authority to regulate tail pipe carbon dioxide emissions, and the bigger issue of the

ruling was whether EPA would regulate greenhouse gas emissions broadly. Moreover, unlike the Urgenda v.

Netherlands case where a ruling was rendered, the Kennedy comments offered an early indication on how

the justice was leaning, but did not offer certainty on what the ruling eventually would be.

To make the coefficients between the court cases and prediction market tables comparable, the estimates

of Table 3, Panel A would need to be divided by the change in probability that enough other countries adopt

similar measures to add up to the same oil use restrictions as Waxman-Markey. Panel B estimates would

need to be divided by both (i) the change in probability that the court sided with the suing parties as well

as (ii) the probability that EPA’s regulatory action of greenhouse gas emissions under the Clean Air Act

would add up to the same oil use restrictions as Waxman-Markey. We unfortunately do not know these

probabilities, but instead note the inverse: if Urgenda v. Netherlands caused a 5-10% increase in market

beliefs that other countries would reduce emissions to a similar extent as Waxman-Markey and potential

follow on policies, then the coefficient estimates from the two tables would be consistent.22 Similarly, if

news that Justice Kennedy supported the states caused a 5% increase in market beliefs that future EPA

regulation of greenhouse gas emission would restrict future oil use to a similar extent as Waxman-Markey,

then the coefficient estimates from the two tables are consistent.

More importantly, both daily changes in the prediction market, the abnormal return on the day of the

surprise Urgenda v. Netherlands ruling, as well as the news that Justice Kennedy would support the states

provide strong evidence that the financial market quickly updates its beliefs about possible future restrictions

to oil use, with implications for the optimal extraction and price path. Notably, restriction in the future

leads to lower prices and more consumption today, offsetting some of the savings in the future through higher

consumption today.

Figure A4, Panel A (Panel B) allows the pooled effect of Table 3, Panel A (Panel B) to vary by maturity.

In Panel A, the coefficients increase with maturity until about 4 months and then start to decrease again.

The persistence is at least as high as what we observed for the 2010-2014 period in Figure A1, a period when

climate legislation was most actively discussed, highlighting that the market saw the news as a persistent

21The inclusion of further days around the event itself in equation (4) would have no impact on the estimated coefficient in
the absence of controls for changes in the overall economy.

22Dividing the coefficients of Table 3, Panel A by 0.05-0.1 gives similar estimates to Table 2.
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rather than a temporary shock. In Panel B, the coefficients weakly increase with maturity until about 11

months and then start to weakly decrease again. The persistence is far higher than that observed for the

2010-2014 period.

Conclusions

We provide novel evidence of the “Green Paradox” for climate change legislation using various panel data

sets. We consistently find that proposed climate bills that limit future oil use, shift oil consumption from

the future towards the present, thereby lowering oil prices in the present and medium-term until the bills

bind. Previous papers on the “Green Paradox” have conducted pre-post comparisons around the passage

or discussion of environmental regulation to construct evidence of legislation’s effect on fossil fuel prices.

Forward-looking futures prices do not respond when laws are enacted or fail to be enacted, but rather to the

release of new information on whether or not a law will pass. Whether or not a bill will pass is oftentimes

clear long before it is enacted, making bill passage not a surprise. Moreover, discerning exactly when major

market belief updates occur can be difficult. One of our paper’s contributions is our reliance on daily oil

price data and market estimates of the probability that a bill will pass, insulating us from the difficulty in

determining when the market participants update their beliefs. Additionally, our reliance on daily variation

and use of direct estimates of market expectations allow us to overcome reverse causality challenges common

in pre-post comparisons. For example, downward trends in prices can decrease resource owners’ resistance

towards a law increasing the likelihood that a bill passes, which would be a concern in a pre-post analysis but

not in our analysis using day-to-day changes. We get around this challenge by exploiting market estimates

of the probability that the US climate law would pass from prediction markets with price variation driven by

political processes unrelated to daily changes in oil prices. Moreover, a falsification test where we offset the

prediction market prices by one day yields null results, highlighting that daily variation drives our results

rather than price level variation across months or quarters.

When markets expect future climate legislation to be more stringent, we find fossil fuel prices decrease

shifting oil consumption from the future to the present. We are unable to speak to whether this shift is caused

by the expected future climate regulation, expected follow on policies, or expected increased competition in

fossil fuel markets. Whatever the channel, we find the anticipation of more stringent future climate policy,

induces more consumption today.

We provide four pieces of evidence that are consistent with the “Green Paradox” for climate change

legislation. First, we document that daily shocks to the oil spot price (changes relative to the previous day)

historically phase out quickly over time, i.e., maturities further into the future show less responsiveness to

changes in present oil prices. This is consistent with temporary spot price shocks, e.g., due to temporary

demand spikes (cold winters) or temporary supply disruptions. However, during the time period when a

US climate bill was deliberated, the average daily shock in the spot price became much more persistent,

indicating that the underlying uncertainty was less transitory and more fundamental. Under the “Green

Paradox,” market belief updates around future climate policy should yield persistent shocks, as each belief

update the entire price path resets.

Second, when we link monthly changes in oil futures to changes in the salience of climate policy in the

news, we find a highly significant negative relationship between the salience of international climate negoti-
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ations and oil futures consistent with a story that international cooperation around climate change enforce

expectations that climate policy will be more stringent moving forward, increasing current oil consumption.

Additionally, we find a significant positive relationship between the salience of renewable energy policy and

oil futures consistent with a story that oil producers have not viewed advances in renewable policy as threats

to future oil demand but rather as a mechanism reducing threats to future oil demand as they reduce the

likelihood of more stringent climate policy.

Third, in what we find to be our most convincing evidence of a causal relationship, we link daily changes

in oil futures to changes in the probability that the US will pass a climate bill and find a highly significant

negative relationship consistent with a story that legislation limiting future oil use increases current con-

sumption. This relationship is even more significant and of higher magnitude when we limit the data to a

few dates of key political events, ruling out reverse causality, as the timing of these political events was not

driven by oil prices. Furthermore, it is unlikely that there are other persistent demand shocks (e.g., higher

than expected GDP growth) or persistent supply shocks (e.g., new discoveries) that coincide on exactly the

26 days that major updates on the bill occurred. By the same token, the surprise ruling of a Dutch Court

that ordered the government to limit fossil fuel use was associated with a significant negative abnormal

oil price return. Moreover, the verdict release date was pre-determined and not affected by daily oil price

movements, again ruling out reverse causality. Similarly, the news that Justice Kennedy, the swing vote,

would support the states suing the EPA to regulate automobile carbon dioxide emissions was associated with

a significant negative abnormal oil price return.

Fourth, the maturity profile of the negative coefficients from the prediction market, the Dutch court

verdict, and news regarding Justice Kennedy show very high persistence. Effects continuously increase in

magnitude for all 24 months for which oil futures are available in the case of prediction market changes.

This is consistent with price path and consumption adjustments that are constrained by short-term supply

constraints, implying that the full effect will only be felt later on. These findings are in sharp contrast to

temporary spot price shocks that tend to phase out rather than in.
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Figure 1: Motivation: Green Paradox

Notes: Figure provides a motivating example of the “Green Paradox.” The black line in the top panel shows a
hypothetical optimal fossil fuel consumption profile with iso-elastic demand, a price-elasticity of η = 0.59 and
an interest rate of δ = 0.03. The Waxman-Markey bill, among other potential policies, would have limited
consumption to 83% from 2050 onward. Under the assumptions of our model, the bill would have been
binding from 2050-2110, reducing consumption by the area A. The bottom panel shows the corresponding
re-optimized consumption path, again as black line. The reduction in consumption (area A) is redistributed
across time: consumption is higher in period 2010-2050 as shown by area B1. Note that the path does not
revert to the old unconstrained path in 2110 (dashed black line) as the arbitrage condition between 2050
and 2110 would be violated. When the regulation is non-binding, the consumption profile is equivalent to
assuming a higher initial endowment (dashed grey line), which drops below the bill’s threshold in 2122 rather
than 2110. Areas B1 and B2 together are of the same size as area A as consumption is reallocated in time.
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Figure 2: Oil Spot Price and Oil Futures for Various Maturities

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

Ch
an

ge
 in

 O
il 

Fu
tu

re
s 

Pr
ic

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Maturity in Number of Months

Time Period: [1990, 2022] [May 2009, Dec 2010]

Notes: Figure plots the results when we regress the change in daily oil futures prices on the corresponding
change in the oil spot price. The coefficients and 90% confidence intervals are allowed to vary by maturity
ranging from 1 to 24 months. Point estimates (marked as x) give the change in oil futures price for a given
change in the spot price, e.g., a coefficient of 0.95 implies that on average 95% of the change in the daily oil
spot price is reflected in the futures price. The two colors represent various temporal subsets of the data.
Regressions control for changes in the S&P 500 index by maturity as well as maturity-by-month fixed effects.
Errors are clustered by day.
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Figure 3: Allowing Nonlinear Relationship between Prediction Market and Oil Futures Returns
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Notes: Figure plots the effect of a change in the probability of a US cap-and-trade bill passing on oil
futures prices by pooling across all maturities and allowing for a non-linear relationship. Specifically, we use
restricted cubic splines with 5 knots (indicated by dashed lines). The point estimates (blue line) as well as
the 90% confidence band are shown on the left y-axis. The density in observed price changes is shown in
green on the right axis - there is a mass point at zero as the price does not change for the majority of days.
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Figure 4: Changes in the Probability of the Climate Bill Passing and Oil Futures by Maturity

(a) Cutoffs Only Applied to Changes in Prediction Market Prices
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(b) Cutoffs Applied to Changes in Prediction Market Prices and in Google Trends Indices
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Notes: Figure Panel A and B plots the effect of a change in prediction market probability of a US cap-and-
trade bill passing on oil futures prices. Coefficients in Panel A and B as well as 90% confidence intervals
are analogous to the coefficients in Table 2, except that the effect is allowed to vary by maturity. Point
estimates (marked as x) give the change in oil price in percent for a 100% change in the probability of the
bill passing (i.e., from certainty it won’t pass to that it will pass). Colors differ by what days are included
in the analysis. The six colors represent the different cutoffs of the six columns in Table 2. For example, in
Panel A the blue lines include all days, while the red lines include only the days when the prediction market
price changed by at least 5 cents (equivalent to a 5% change in the probability of passing). In Panel B, the
blue lines again include all days, while the red lines include only the days when the prediction market price
changed by at least 5 cents and the Google search volume was at least 5% of the day with maximum search
activity. Regressions control for changes in the S&P 500 index by maturity as well as maturity-by-month
fixed effects. Errors are clustered by day.
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Table 1: Media Coverage of Climate Policy and Prices of Oil Futures

(1) (2) (3) (4)

International Climate Negotiations -0.918∗∗ -0.918∗ -0.958∗∗ -0.975∗∗

(0.385) (0.472) (0.373) (0.453)
Renewable Policy 2.667∗∗ 2.719∗ 2.571∗∗ 2.581∗

(1.256) (1.533) (1.234) (1.501)
Environmental Policy 0.306 0.252 0.435 0.436

(0.942) (1.151) (0.905) (1.096)

Quarter x Year FEs Yes No Yes No
Maturity x Quarter x Year FEs No Yes No Yes
S&P 500 x Maturity No No Yes Yes
Observations 9240 9193 9240 9193

Notes: Table regress the change in the closing price of oil futures (24 different maturities ranging from 1 to 24 months into

the future) on monthly indices measuring the share of news articles covering international climate negotiations, renewable

energy policy, and environmental policy generally. All indices are standardized to a mean of zero and unit standard deviation.

Coefficients give the percent change in the closing oil price for a one standard deviation increase in each news index. As a

reference, the Paris Climate Agreement is associated with an International Climate Negotiation index 6 standard deviations

above the mean. First Solar’s signing of a memorandum with China to build the world’s largest photovoltaic power plant is

associated with a Renewable index of 2.75 standard deviations above the mean. Columns differ in the controls included. For

example, column (1) includes quarter by year fixed effects and column (4) includes maturity by quarter by year fixed effects

and controls for changes in the S&P 500 index by maturity (Columns 1 and 2 force the effect of the S&P 500 index to be the

same across maturities). Errors are clustered by month.
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Table 2: Prediction Market for Climate Bill and Price of Oil Futures

(1) (2) (3) (4) (5) (6)
Panel A: Cutoffs for Prediction Market Prices

Prediction Market -3.43∗ -3.68∗ -3.49∗ -3.89∗ -6.83∗∗∗ -7.08∗∗∗

(1.87) (1.98) (1.97) (2.26) (2.07) (2.39)
Observations 10072 2880 1920 1344 912 624
Fixed Effects 480 456 384 360 264 240
Clusters 420 120 80 56 38 26

Panel B: Cutoffs for Prediction Market & Google
Prediction Market -3.43∗ -4.34∗ -4.35∗ -5.03∗∗ -5.23∗∗ -6.99∗∗

(1.87) (2.55) (2.39) (2.43) (2.38) (2.97)
Observations 10072 1992 1296 936 672 384
Fixed Effects 480 456 360 312 240 144
Clusters 420 83 54 39 28 16
Min market change 0 1 2 3 4 5

Notes: Table regresses daily changes in oil futures (24 different maturities ranging from 1 to 24 months into the future) on

the change in the prediction market probability that a US cap-and-trade bill will pass. Coefficients give the percent change

in oil futures for a 100% change in the probability of the bill passing (i.e., from certainty in won’t pass to that it will pass).

Columns differ by what days are used in the analysis, with the bottom row listing the cutoff value for the absolute change in

the prediction market price (and Google Trends index) required for a day to be included. For example, column (1) of panel A

includes all days, while column (6) of panel A includes only the days when the prediction market price changed by at least 5

cents (equivalent to a 5% change in the probability of passing). Column (1) of panel B again includes all days, while column (6)

of panel B includes only the days when the prediction market price changed by at least 5 cents and the Google search volume

was at least 5% of the day with maximum search activity. All regressions control for changes in the S&P 500 index by maturity

as well as maturity-by-month fixed effects. Errors are clustered by day.
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Table 3: News About Historic Climate Court Cases and Prices of Oil Futures

(1) (2) (3) (4) (5)
Panel A: Urgenda v. Netherlands Court Ruling

1v -0.573∗∗ -0.618∗∗ -0.653∗∗ -0.929∗∗∗ -0.895∗∗∗

(0.276) (0.260) (0.258) (0.281) (0.277)
Observations 6275 31449 56515 181665 200539
Fixed Effects 300 1500 2700 8819 9719
Clusters 251 1258 2261 7538 8294
Years [15,15] [13,17] [11,19] [90,19] [90,22]

Panel B: Justice Kennedy Indicates Support
1k -0.548∗∗ -0.485∗∗ -0.472∗∗ -0.485∗∗ -0.474∗∗

(0.229) (0.231) (0.232) (0.231) (0.232)
Observations 6248 31321 56395 181665 200539
Fixed Effects 300 1500 2700 8819 9719
Clusters 250 1254 2258 7538 8294
Years [06,06] [04,08] [02,10] [90,19] [90,22]

Notes: Table regresses the change in oil futures (24 different maturities ranging from 1 to 24 months into the future) on

dummies representing the days two historic climate court cases peaked in popularity on Google. Panel A regresses the change

in oil futures on 1v for June 24, 2015, the day the Urgenda v. Netherlands verdict was rendered. Panel B regresses the change

in oil futures on 1k for December 6, 2006, the day prevailing news suggested that Justice Kennedy would back the states suing

the EPA. Coefficients give the change in oil price in percent. Columns differ by what days are included in the analysis with the

bottom row in each panel displaying the range of years that are used to derive the controls. Column (1) focuses only on days

in the year the court cases peaked in popularity on Google, while column (5) includes all days between 1990-2022. Regressions

control for changes in the S&P 500 index by maturity as well as maturity-by-month fixed effects. Errors are clustered by day.
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Figure A1: Oil Spot Price and Oil Futures for Various Maturities - Temporal Evolution
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Notes: Figure replicates Figure 2 but breaks the overall period into sub-periods. It again plots the results
when we regress the change in daily oil futures prices on corresponding change in the oil spot price. The
coefficients and 90% confidence intervals are allowed to vary by maturity ranging from 1 to 24 months. Point
estimates (marked as x) give the change in oil futures prices for a given change in the spot price. The seven
colors represent various temporal subsets of the data. Regressions controls for changes in the S&P 500 index
by maturity as well as maturity-by-month fixed effects. Errors are clustered by day.
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Figure A2: Sensitivity Check: Oil Futures Sensitivity to S&P 500 Over Time

Notes: Figure presents the results when we regress the daily changes in oil futures prices on changes in the
S&P 500 index during the time period the prediction market is active. The effect is forced to be the same
across all 24 maturities, but allowed to vary over time as the world just recovered from the 2008 financial
crisis. Specifically, we interact the change in the S&P 500 index with a restricted cubic spline with three knots
(shown as green dashed lines) in time. They allow for a flexible response function (3rd-order polynomials
between knots). The purple shaded area reflects the 90% confidence band. Errors are clustered by day. The
sensitivity of oil futures to the S&P 500 did not vary over the sample period.
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Figure A3: Sensitivity Check: Prediction Market and Oil Futures by Maturity Controlling for Spot Price

(a) Cutoffs Only Applied to Changes in Prediction Market Prices
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(b) Cutoffs Applied to Changes in Prediction Market Prices and in Google Trends Indices
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Notes: Figure presents a sensitivity analysis to the main results in Figure 4, where we control for the WTI
oil spot price. Both panels plot the effect of a change in prediction market probability for the passage of a
US cap-and-trade bill on oil futures prices. Point estimates (marked as x) give percent change in oil futures
for a 100% change in the probability of the bill passing (i.e., from certainty it won’t pass to that it will
pass). Colors differ by what days are included in the analysis. The six colors represent the different cutoffs
of the six columns in Table 2. For example, in Panel A the blue lines include all days, while the red lines
include only the days when the prediction market price changed by at least 5 cents (equivalent to a 5%
change in the probability of passing). In Panel B, like Panel A, the blue lines include all days, while the red
lines include only the days when the prediction market price changed by at least 5 cents and the Google
search volume was at least 5% of the day with maximum search activity. All regressions control for changes
in the S&P 500 index by maturity, oil spot price, as well as maturity-by-month fixed effects. Errors are
clustered by day.
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Figure A4: Oil Future Returns in Response to Breaking News About Court Cases by Maturity

(a) Oil Future Returns On Day of Urgenda vs Netherlands Ruling
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(b) Oil Future Returns On Day Justice Kennedy Appears to Back States
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Notes: Figure plots the effect of significant information shocks regarding the verdicts of two historic cli-
mate court cases on oil futures prices. Panel A plots the effect of the Urgenda v. Netherlands verdict
announcement, which was also the day when the interest peaked in search volume on Google Trends. Panel
B plots the effect of the prevailing news that Justice Kennedy – a key swing vote – appeared to be backing
the states suing the EPA; the day when the Massachusetts v. EPA court case peaked in search volume
on Google Trends. The coefficients and 90% confidence intervals are allowed to vary by maturity ranging
from 1 to 24 months. Point estimates (marked as x) give the percent change in oil futures on the day each
court case peaked in popularity on Google. Colors differ by what days are included in the analysis with the
five colors representing the range of years used in the five columns of Table 3. For example, the blue lines
focus only on days in the year each court case peaked in popularity on Google, while the red lines include
all days between 1990-2022. Regressions control for changes in the S&P 500 index by maturity as well as
maturity-by-month fixed effects. Errors are clustered by day.
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Figure A5: Sensitivity Check: Prediction Market and Oil Futures with Spot Price as Outcome Variable

(a) Cutoffs Only Applied to Changes in Prediction Market Prices
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(b) Cutoffs Applied to Changes in Prediction Market Prices and in Google Trends Indices
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Notes: Figure presents an auxiliary analysis to the main results in Figure 4, where we also include the
oil spot price as an outcome variable (shown as an oil future with maturity in zero months). Both panels
plot the effect of a change in prediction market probability for the passage of a US cap-and-trade bill on
oil futures prices. Point estimates (marked as x) give percent change in oil futures for a 100% change in
the probability of the bill passing (i.e., from certainty it won’t pass to that it will pass). Colors differ by
what days are included in the analysis. The six colors represent the different cutoffs of the six columns in
Table 2. For example, in Panel A the blue lines include all days, while the red lines include only the days
when the prediction market price changed by at least 5 cents (equivalent to a 5% change in the probability
of passing). In Panel B, like Panel A, the blue lines include all days, while the red lines include only the
days when the prediction market price changed by at least 5 cents and the Google search volume was at
least 5% of the day with maximum search activity. All regressions control for changes in the S&P 500 index
by maturity, oil spot price, as well as maturity-by-month fixed effects. Errors are clustered by day.
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Table A1: Sensitivity Check: Climate Policy Salience and Oil Futures Controlling For Spot Price

(1) (2) (3) (4)

International Climate Negotiations -0.804∗∗ -0.803 -0.852∗∗ -0.869∗

(0.399) (0.489) (0.386) (0.470)
Renewable Policy 2.506∗∗ 2.556∗ 2.393∗ 2.395

(1.262) (1.540) (1.245) (1.518)
Environmental Policy 0.084 0.028 0.233 0.236

(0.966) (1.180) (0.927) (1.123)

Quarter x Year FEs Yes No Yes No
Maturity x Quarter x Year FEs No Yes No Yes
S&P 500 x Maturity No No Yes Yes
Oil Spot Price x Maturity Yes Yes Yes Yes
Observations 9216 9162 9216 9162

Notes: Table presents a sensitivity analysis of the main results in Table 1, where we control for the WTI oil spot price. Table

regress the change in the closing price of oil futures (24 different maturities ranging from 1 to 24 months into the future)

on monthly indices measuring the share of news articles covering international climate negotiations, renewable energy policy,

and environmental policy generally. All indices are standardized to a mean of zero and unit standard deviation. Coefficients

give the percent change in the closing oil price for a one standard deviation increase in each news index. As a reference, the

Paris Climate Agreement is associated with an International Climate Negotiation index 6 standard deviations above the mean.

First Solar’s signing of a memorandum with China to build the world’s largest photovoltaic power plant is associated with a

Renewable index of 2.75 standard deviations above the mean. Columns differ in the controls included. For example, column (1)

includes quarter by year fixed effects and column (4) includes maturity by quarter by year fixed effects and controls for changes

in the S&P 500 index by maturity (Columns 1 and 2 force the effect of the S&P 500 index to be the same across maturities).

Errors are clustered by month.
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Table A2: Sensitivity Check: Prediction Market and Oil Futures - Clustering

(1) (2) (3) (4) (5) (6)
Panel A: Cluster by Day

Prediction Market -3.43∗ -3.68∗ -3.49∗ -3.89∗ -6.83∗∗∗ -7.08∗∗∗

(1.87) (1.98) (1.97) (2.26) (2.07) (2.39)
Clusters 420 120 80 56 38 26

Panel B: Cluster by Future-Maturity and Month
Prediction Market -3.43∗∗ -3.68∗∗∗ -3.49∗∗ -3.89∗ -6.83∗∗∗ -7.08∗∗∗

(1.50) (1.26) (1.55) (1.91) (1.44) (2.07)
Clusters 44 43 40 39 35 34

Panel C: Cluster by Future-Maturity-Month
Prediction Market -3.43∗∗∗ -3.68∗∗∗ -3.49∗∗∗ -3.89∗∗∗ -6.83∗∗∗ -7.08∗∗∗

(0.31) (0.27) (0.32) (0.40) (0.31) (0.42)
Clusters 480 456 384 360 264 240

Panel D: Robust Standard Errors
Prediction Market -3.43∗∗∗ -3.68∗∗∗ -3.49∗∗∗ -3.89∗∗∗ -6.83∗∗∗ -7.08∗∗∗

(0.39) (0.41) (0.41) (0.47) (0.43) (0.49)
Observations 10072 2880 1920 1344 912 624
Fixed Effects 480 456 384 360 264 240
Min market change 0 1 2 3 4 5

Notes: Table replicates Table 2 in panel A, and presents sensitivity analysis for various clustering structures in panels B-D.

Table regresses daily changes in oil futures (24 different maturities ranging from 1 to 24 months into the future) on the change

in the prediction market probability that a US cap-and-trade bill will pass. Coefficients give the percent change in oil futures

for a 100% change in the probability of the bill passing (i.e., from certainty in won’t pass to that it will pass). Columns differ

by what days are used in the analysis, with the bottom row listing the cutoff value for the absolute change in the prediction

market price (and Google Trends index) required for a day to be included. For example, column (1) of panel A includes all days,

while column (6) of panel A includes only the days when the prediction market price changed by at least 5 cents (equivalent

to a 5% change in the probability of passing). Column (1) of panel B again includes all days, while column (6) of panel B

includes only the days when the prediction market price changed by at least 5 cents and the Google search volume was at least

5% of the day with maximum search activity. All regressions control for changes in the S&P 500 index by maturity as well as

maturity-by-month fixed effects.
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Table A3: News Coverage on Days when Prediction Market Price Changed by at Least 5 Cents

Date Change Lexis-Nexis Search for News Coverage
05/11/09 -10.0 “While Democrats met behind closed doors, Republicans held a public energy summit to consider alternative solutions to

what they dub a ‘cap and tax’ program.” (SNL Energy Dataset, S&P Global Marketplace)
05/12/09 +20.0 “The U.S. House of Representatives will pass a sweeping climate change bill by the end of next week, House Energy

Committee Chairman Henry Waxman said.” (Reuters)
05/13/09 -10.0 “The Economic Impact of Waxman-Markey.” (States News Service on Heritage Foundation Report)
06/01/09 +5.2 “The 30-page report, commissioned by the U.S. Department of Energy, focuses on draft bills introduced individually by

Senate Energy and Natural Resources Committee Chairman Jeff Bingaman, D-N.M., and House Subcommittee on Energy
and Environment Chairman Edward Markey, D-Mass., and a joint bill by Markey and House Energy and Commerce
Committee Chairman Henry Waxman, D-Calif. Bingaman’s bill did not fare as well as the others in terms of raising
renewable capacity and reducing emissions, according to the report.” (SNL Energy Dataset, S&P Global Marketplace)

06/08/09 +5.0 “A new analysis of the bill by the Congressional Budget Office (CBO) shows the legislation is a fiscally-responsible clean
energy plan.” (States News Service on press release by Markey)

07/01/09 +5.0 “Duke CEO: New state-federal relationship needed to meet Waxman-Markey targets.” (SNL Power Daily Northeast, S&P
Global Marketplace)

07/09/09 -6.9 “The Waxman-Markey bill passed by the U.S. House of Representatives last month would set strict new carbon dioxide
emissions levels for new coal plants, requiring them to come close to current natural gas plants in CO2 emissions.” (SNL
Power Daily Northeast, S&P Global Marketplace)

08/17/09 -9.8 “EPA denies senators’ request to redo Waxman-Markey analysis.” (SNL Electric Utility Report, S&P Global Marketplace)
08/27/09 -9.8 “The National Association of Manufacturers today launched a multi-state, multi-million-dollar comprehensive advertising

campaign opposing the American Clean Energy and Security Act (H.R. 2454), also known as the Waxman-Markey climate
change bill.” (States News Service)

11/04/09 -11.0 “Consulting firm Point Carbon notes that recent legislative proposals in the US Congress hold oil companies accountable
for both refinery and tailpipe emissions, making them more vulnerable to carbon controls than the coal-dominated electric
utility sector. And the Energy Policy Research Foundation (EPRINC) calculates that climate change legislation currently
being debated in Congress could put as much as 8 million barrels per day of US refining capacity at risk of closure – an
astounding 45% of total operable domestic capacity.” (Oil Daily)

11/19/09 -5.0 “The American Recovery and Reinvestment Act recommitted or country to science and technology. And the Waxman-
Markey clean energy legislation that the House passed this past June will extend this commitment by investing $200 billion
through 2025 to unleash the clean energy revolution waiting to happen across America.” (US Fed News)

12/21/09 -7.0 “Sens. Maria Cantwell, D-Wash., and Susan Collins, R-Maine, unveiled a climate change bill in the Senate on Dec. 11
that would auction carbon permits to producers and importers of coal, natural gas and oil, which is an approach that
differs dramatically from the Waxman-Markey cap-and-trade bill that the House of Representatives passed in June.” (SNL
Electric Utility Report, S&P Global Marketplace)

12/28/09 -10.8 “The findings, contained in a new analysis from the environmental think tank Resources for the Future, bolster the rationale
for a cap-and-dividend plan introduced earlier this month by Sens. Maria Cantwell (D-WA) and Susan Collins (R-ME),
which calls for auctioning all allowances and returning 75 percent of the revenue raised to the public in the form of monthly
rebates. The Cantwell-Collins bill is a competitor to the leading Senate cap-and-trade proposal authored by Sens. John
Kerry (D-MA) and Barbara Boxer (D-CA), which mirrors the House bill.” (Carbon Control News)

03/15/10 +12.0 “A new report prepared for the environmental group Natural Resources Defense Council (NRDC) finds that requiring
carbon capture and storage (CCS) technology to be installed on new power generation and industrial facilities would not
cause severe damage to the U.S. economy, but could provide economic benefits by boosting domestic oil production 3
million to 3.6 million barrels a day by 2030 if the CO2 were injected underground for enhanced oil recovery.” (Carbon
Control News)

03/17/10 -8.0 “Bingaman: Comprehensive energy legislation not likely in Senate in 2010.” (SNL FERC Power Report, S&P Global
Marketplace)

03/23/10 +7.0 “In a March 22 letter addressed to Sen. Maria Cantwell, D-Wash., the International Emissions Trading Association said the
Carbon Limits and Energy for America’s Renewal Act, or CLEAR Act, is fundamentally flawed as written, and the group
expressed its concern the legislation will not achieve its stated emissions reduction objectives in the most cost-effective
manner possible. On Dec. 11, 2009, Cantwell and Sen. Susan Collins, R-Maine, unveiled a climate change bill in the
Senate that would auction carbon permits to producers and importers of coal, natural gas and oil, an approach that differs
dramatically from the Waxman-Markey cap-and-trade bill, which the House of Representatives passed in June of 2009.”
(SNL Power Daily, S&P Global Marketplace)

03/24/10 -9.0 “The American Petroleum Institute released the following statement today from its President and CEO Jack Gerard
commenting on some media reports characterizing API’s position on the Kerry-Graham-Lieberman climate discussions:
[...] Moving away from the House Waxman-Markey approach was imperative. The House bill would have eliminated
millions more jobs than it created and unfairly burdened families, farmers, truckers and other regular users of gasoline,
diesel and other petroleum products.” (States News Service)

03/26/10 +5.1 “Cap and Trade Loses Its Standing as Energy Policy of Choice.” (New York Times)
04/05/10 -10.0 “The House of Representatives-passed Waxman-Markey climate bill allows holders of RGGI allowances to exchange them

for federal emission permits based on the average auction price paid for the allowances in a given year. However, the
passage of similar climate legislation in the Senate has faced an uphill battle since the end of last year.” (SNL Power Daily,
S&P Global Marketplace)

04/14/10 +7.0 “Chairman Markey: Climate Bill Has Multiple Benefits.” (Congressional Documents and Publications)
04/19/10 +5.1 “Congress weighs far-reaching global warming bill. [...] If Congress balks, the Obama administration has signaled a

willingness to use decades-old clean air laws to impose tough new regulations for motor vehicles and many industrial plants
to limit their release of climate-changing pollution.” (Associated Press International)

04/26/10 -6.0 “South Carolina Republican Sen. Lindsey Grahamn is getting an enormous amount of flack for subtracting his initial from
the Kerry-Graham-Lieberman energy bill that was due to be revealed this morning. Graham’s decision delays debate and
could possibly be fatal for the bill’s prospects.” (Atlantic Online)

05/14/10 -8.0 “Sens. John Kerry, D-Mass., and Joe Lieberman, I-Conn., released the details of their long-awaited Senate energy and
climate change legislation.” (SNL Renewable Energy Weekly, S&P Global Marketplace)

05/19/10 +8.0 “Markey Statement on New National Academy of Science Reports.” (States News Service)
07/13/10 -7.8 “Maryland Republican Party Spokesman Ryan Mahoney issued the following statement today: [...] Cap And Trade Could

Cause The Loss Of Up To 41,500 Jobs In Maryland.” (States News Service)
07/23/10 -8.5 “Democrats Call Off Climate Bill Effort.” (New York Times)

Notes: Table provides the results from a Lexis-Nexis search on the terms “Waxman Markey” on the 26 days when the prediction

market price changed by at least 5%, i.e., the days used in column (6) of Table 2. The first column gives the date, the second the

change in the prediction market probability the legislation will pass, and the third the news story.
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Table A4: Sensitivity Check: Prediction Market and Oil Futures Controlling For Spot Price

(1) (2) (3) (4) (5) (6)
Panel A: Cutoffs for Prediction Market Prices

Prediction Market -2.69 -3.23 -3.16 -3.33 -6.16∗∗∗ -6.66∗∗∗

(1.90) (1.99) (2.05) (2.38) (2.13) (2.39)
Observations 10072 2880 1920 1344 912 624
Fixed Effects 480 456 384 360 264 240
Clusters 420 120 80 56 38 26

Panel B: Cutoffs for Prediction Market & Google
Prediction Market -2.69 -4.09 -4.00 -4.64∗ -4.66∗ -6.89∗∗

(1.90) (2.55) (2.42) (2.51) (2.58) (2.94)
Observations 10072 1992 1296 936 672 384
Fixed Effects 480 456 360 312 240 144
Clusters 420 83 54 39 28 16
Min market change 0 1 2 3 4 5

Notes: Table presents a sensitivity analysis of the main results in Table 2, where we additionally control for the WTI oil spot

price. Table regresses daily changes in oil futures (24 different maturities ranging from 1 to 24 months into the future) on

the change in the prediction market probability that a US cap-and-trade bill will pass. Coefficients give the percent change

in oil futures for a 100% change in the probability of the bill passing (i.e., from certainty in won’t pass to that it will pass).

Columns differ by what days are used in the analysis, with the bottom row listing the cutoff value for the absolute change in

the prediction market price (and Google Trends index) required for a day to be included. For example, column (1) of panel A

includes all days, while column (6) of panel A includes only the days when the prediction market price changed by at least 5

cents (equivalent to a 5% change in the probability of passing). Column (1) of panel B again includes all days, while column (6)

of panel B includes only the days when the prediction market price changed by at least 5 cents and the Google search volume

was at least 5% of the day with maximum search activity. All regressions control for changes in the S&P 500 index by maturity

as well as maturity-by-month fixed effects. Errors are clustered by day.
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Table A5: Sensitivity Check: Prediction Market and Oil Futures - High Trade Volume

(1) (2) (3) (4) (5) (6)
Panel A: Cutoffs for Prediction Market Prices

Prediction Market -3.94 -2.79 -6.23∗ -8.68∗∗∗ -10.70∗∗∗ -9.46∗∗∗

(3.17) (3.81) (3.25) (2.79) (2.29) (0.73)
Observations 2568 864 504 336 264 168
Fixed Effects 432 288 192 144 120 72
Clusters 107 36 21 14 11 7

Panel B: Cutoffs for Prediction Market & Google
Prediction Market -3.94 -2.79 -6.23∗ -8.68∗∗∗ -10.70∗∗∗ -9.46∗∗∗

(3.17) (3.81) (3.25) (2.79) (2.29) (0.73)
Observations 2568 864 504 336 264 168
Fixed Effects 432 288 192 144 120 72
Clusters 107 36 21 14 11 7
Min market change 0 1 2 3 4 5

Notes: Table presents a sensitivity analysis of the main results in Table 2, where we only include days when the trade volume

in the prediction market was at least 12, the median trade volume for days with more than zero trades. Table regresses daily

changes in oil futures (24 different maturities ranging from 1 to 24 months into the future) on the change in the prediction

market probability that a US cap-and-trade bill will pass. Coefficients give the percent change in oil futures for a 100% change

in the probability of the bill passing (i.e., from certainty in won’t pass to that it will pass). Columns differ by what days are

used in the analysis, with the bottom row listing the cutoff value for the absolute change in the prediction market price (and

Google Trends index) required for a day to be included. For example, column (1) of panel A includes all days, while column (6)

of panel A includes only the days when the prediction market price changed by at least 5 cents (equivalent to a 5% change in

the probability of passing). Column (1) of panel B again includes all days, while column (6) of panel B includes only the days

when the prediction market price changed by at least 5 cents and the Google search volume was at least 5% of the day with

maximum search activity. All regressions control for changes in the S&P 500 index by maturity as well as maturity-by-month

fixed effects. Errors are clustered by day.
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Table A6: Sensitivity Check: Prediction Market and Oil Futures - Step Function

(1) (2) (3) (4) (5)
A: Cutoffs for Prediction Market Prices

IPrediction Market Shock -2.52 -2.12 -3.46 -4.89∗∗ -3.81
(2.55) (2.32) (2.20) (2.26) (2.39)

Average Prediction Market Shock (%) 4 5 6 7 8
Event Count 2904 2016 1416 1032 720
Observations 10072 10072 10072 10072 10072
Fixed Effects 480 480 480 480 480
Clusters 420 420 420 420 420

B: Cutoffs for Prediction Market & Google
IPrediction Market Shock -8.46∗∗∗ -4.86∗ -4.35 -5.38∗ -3.12

(3.20) (2.84) (2.78) (2.80) (2.91)
Average Prediction Market Shock (%) 4 5 6 7 8
Event Count 1752 1272 984 720 504
Observations 10072 10072 10072 10072 10072
Fixed Effects 480 480 480 480 480
Clusters 420 420 420 420 420
Min market change 1 2 3 4 5

Notes: Table Panel A and B regress the change in oil futures (24 different maturities ranging from 1 to 24 months into the
future) on a prediction market shock. Our main results displayed in Table 2 rely on variation in prediction market prices
to identify the effect of a US cap-and-trade bill on oil prices. Some prediction market skeptics argue that prediction market
price levels are unreliable. In this exercise we ignore variation in prediction market levels within categories but only examine a
response between categories. Specifically, we regress the change in oil futures on a piece-wise function S(∆xt, c) such that:

S(∆xt, c) =


1 if ∆ xt ≥ c

0 if |∆ xt| < c

−1 if ∆ xt ≤ −c

We expect the effect of a positive prediction market shock on oil prices to be negative and a negative shock to be positive.

Thus, we allow the effect of a prediction market shock to vary in direction by shock sign. The coefficient associated with S(·)
reflects the average effect of prediction market information shocks on oil future returns. Coefficients are scaled by 100

P
, where

P equals the average prediction market change designated as a shock by S(·). Hence, coefficients give the change in the oil

price in percent for a 100% change in the probability of the bill passing (i.e., from certainty in won’t pass to that it will pass).

Columns differ by what days are used in the analysis, with the bottom row listing the cutoff value for the absolute change in

the prediction market price (and Google Trends index) required for a day to be included. For example, column (1) of panel A

includes all days, while column (6) of panel A includes only the days when the prediction market price changed by at least 5

cents (equivalent to a 5% change in the probability of passing). Column (1) of panel B again includes all days, while column (6)

of panel B includes only the days when the prediction market price changed by at least 5 cents and the Google search volume

was at least 5% of the day with maximum search activity. All regressions control for changes in the S&P 500 index by maturity

as well as maturity-by-month fixed effects. Errors are clustered by day.
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Table A7: Sensitivity Check: Prediction Market and Oil Futures - Falsification Using Lead

(1) (2) (3) (4) (5) (6)
Panel A: Cutoffs for Prediction Market Prices

Prediction Market 0.39 0.93 1.24 0.63 -1.45 2.30
(2.74) (2.70) (2.38) (2.34) (2.47) (2.87)

Observations 10064 2872 1912 1328 912 624
Fixed Effects 480 456 384 352 264 240
Clusters 420 120 80 56 38 26

Panel B: Cutoffs for Prediction Market & Google
Prediction Market 0.39 -0.39 0.53 -2.50 -3.72 0.34

(2.74) (3.77) (3.17) (2.91) (2.79) (3.67)
Observations 10064 1984 1288 920 672 384
Fixed Effects 480 456 360 304 240 144
Clusters 420 83 54 39 28 16
Min market change 0 1 2 3 4 5

Notes: Table presents a falsification check of the main results in Table 2, where we include the lead (next day’s) change in the

prediction market. Table regresses daily changes in oil futures (24 different maturities ranging from 1 to 24 months into the

future) on next period’s change in the prediction market probability that a US cap-and-trade bill will pass. Coefficients give

the percent change in oil futures for a 100% change in the probability of the bill passing (i.e., from certainty in won’t pass to

that it will pass). Columns differ by what days are used in the analysis, with the bottom row listing the cutoff value for the

absolute change in the prediction market price (and Google Trends index) required for a day to be included. For example,

column (1) of panel A includes all days, while column (6) of panel A includes only the days when the prediction market price

changed by at least 5 cents (equivalent to a 5% change in the probability of passing). Column (1) of panel B again includes

all days, while column (6) of panel B includes only the days when the prediction market price changed by at least 5 cents and

the Google search volume was at least 5% of the day with maximum search activity. All regressions control for changes in the

S&P 500 index by maturity as well as maturity-by-month fixed effects. Errors are clustered by day.
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Table A8: Sensitivity Check: Prediction Market and Oil Futures - Controlling for S&P 500 Yield Curve

(1) (2) (3) (4) (5) (6)
Panel A: Cutoffs for Prediction Market Prices

Prediction Market -3.37∗ -4.03∗∗ -2.83 -2.97 -7.29∗∗∗ -9.78∗∗∗

(1.90) (2.01) (1.97) (2.64) (2.49) (2.66)
Observations 10072 2880 1920 1344 912 624
Fixed Effects 480 456 384 360 264 240
Clusters 420 120 80 56 38 26

Panel B: Cutoffs for Prediction Market & Google
Prediction Market -3.37∗ -4.58∗ -3.13 -4.69 -6.95∗∗ -8.31∗∗

(1.90) (2.56) (2.41) (3.15) (2.82) (3.86)
Observations 10072 1992 1296 936 672 384
Fixed Effects 480 456 360 312 240 144
Clusters 420 83 54 39 28 16
Min market change 0 1 2 3 4 5

Notes: Table presents a sensitivity analysis of the main results in Table 2, where we account for market expectations on

economic growth by additionally including the change in the difference between the S&P 500 Future 8 months into the future

and the current S&P 500 index. Recall that all regressions already control for changes in the contemporaneous S&P 500 index,

but this additional control is the market expectation on future growth. Table regresses daily changes in oil futures (24 different

maturities ranging from 1 to 24 months into the future) on the change in the prediction market probability that a US cap-and-

trade bill will pass. Coefficients give the percent change in oil futures for a 100% change in the probability of the bill passing

(i.e., from certainty in won’t pass to that it will pass). Columns differ by what days are used in the analysis, with the bottom

row listing the cutoff value for the absolute change in the prediction market price (and Google Trends index) required for a day

to be included. For example, column (1) of panel A includes all days, while column (6) of panel A includes only the days when

the prediction market price changed by at least 5 cents (equivalent to a 5% change in the probability of passing). Column (1) of

panel B again includes all days, while column (6) of panel B includes only the days when the prediction market price changed

by at least 5 cents and the Google search volume was at least 5% of the day with maximum search activity. All regressions

control for changes in the S&P 500 index by maturity as well as maturity-by-month fixed effects. Errors are clustered by day.
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Table A9: Sensitivity Check: Prediction Market and Oil Storage and Production

(1) (2) (3) (4) (5) (6)
Panel A: Weekly Effect on Oil Prices

Prediction Market -3.60 -7.43 -8.68 -7.22 -7.03 -2.14
(8.41) (8.82) (8.50) (7.98) (7.90) (8.45)

Observations 2040 984 816 672 576 336
Fixed Effects 168 144 144 144 144 120
Clusters 85 41 34 28 24 14

Panel B: Weekly Effect on Oil Storage
Prediction Market -3.04 -2.46 -2.31 -2.05 -2.35 0.34

(2.56) (2.29) (2.33) (2.33) (2.45) (2.43)
Observations 85 41 34 28 24 14
Fixed Effects 7 6 6 6 6 5
Clusters 85 41 34 28 24 14

Panel C: Weekly Effect on Oil Production
Prediction Market -0.44 0.99 0.50 -0.13 -0.40 -0.60

(2.10) (2.05) (2.14) (2.09) (2.07) (1.59)
Observations 85 41 34 28 24 14
Fixed Effects 7 6 6 6 6 5
Clusters 85 41 34 28 24 14
Min market change 0 1 2 3 4 5

Notes: Table Panel A presents a sensitivity analysis of the main results in Table 2, where the effect of changes in the probability

of the climate bill passing is estimated using weekly rather than daily variation in prediction market prices. Panel A regresses

the change in oil futures (24 different maturities ranging from 1 to 24 months into the future) on the change in the prediction

market probability that a US cap-and-trade bill will pass at the weekly level. Panel B (C) regresses the change in oil storage

(production) on the change in prediction market prices at the weekly level. Panel A coefficients give the percent change in oil

futures for a 100% change in the probability of the bill passing (i.e., from certainty in won’t pass to that it will pass). Panel

B (C) coefficients give the percent change in oil stored (produced) for a 100% change in the probability of the bill passing.

Columns differ by what weeks are used in the analysis, with the bottom row listing the cutoff value for the absolute change

in the prediction market price required for a week to be included. For example, column (1) in panel A includes all weeks,

while column (6) includes only the weeks when the prediction market price changed by at least 5 cents. Regressions control for

changes in the S&P 500 index by maturity as well as maturity-by-quarter fixed effects. Errors are clustered by week.
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Table A10: Sensitivity Check: Prediction Market and Coal Futures

(1) (2) (3) (4) (5) (6)
Panel A: Cutoffs for Prediction Market Prices

Prediction Market -1.02 -1.39 -2.60 -3.00 -3.75∗ -5.50∗

(1.63) (1.66) (1.81) (1.89) (1.99) (2.91)
Observations 10080 2880 1920 1344 912 624
Fixed Effects 480 456 384 360 264 240
Clusters 420 120 80 56 38 26

Panel B: Cutoffs for Prediction Market & Google
Prediction Market -1.02 -4.12∗ -4.55∗ -4.96∗ -5.22∗ -8.45∗∗

(1.63) (2.29) (2.66) (2.65) (2.94) (3.24)
Observations 10080 1992 1296 936 672 384
Fixed Effects 480 456 360 312 240 144
Clusters 420 83 54 39 28 16
Min market change 0 1 2 3 4 5

Notes: Table regresses daily changes in coal futures (24 different maturities ranging from 1 to 24 months into the future) on

the change in the prediction market probability that a US cap-and-trade bill will pass. Coefficients give the percent change

in coal futures for a 100% change in the probability of the bill passing (i.e., from certainty in won’t pass to that it will pass).

Columns differ by what days are used in the analysis, with the bottom row listing the cutoff value for the absolute change in

the prediction market price (and Google Trends index) required for a day to be included. For example, column (1) of panel A

includes all days, while column (6) of panel A includes only the days when the prediction market price changed by at least 5

cents (equivalent to a 5% change in the probability of passing). Column (1) of panel B again includes all days, while column (6)

of panel B includes only the days when the prediction market price changed by at least 5 cents and the Google search volume

was at least 5% of the day with maximum search activity. All regressions control for changes in the S&P 500 index by maturity

as well as maturity-by-month fixed effects. Errors are clustered by day.
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Table A11: Sensitivity Check: Prediction Market and Coal Futures Controlling For Oil Spot Price

(1) (2) (3) (4) (5) (6)
Panel A: Cutoffs for Prediction Market Prices

Prediction Market -0.93 -1.46 -2.97 -3.84∗ -4.85∗∗ -6.12∗

(1.65) (1.78) (1.94) (2.10) (2.31) (3.04)
Observations 10080 2880 1920 1344 912 624
Fixed Effects 480 456 384 360 264 240
Clusters 420 120 80 56 38 26

Panel B: Cutoffs for Prediction Market & Google
Prediction Market -0.93 -4.19∗ -4.95∗ -5.46∗∗ -6.06∗∗ -9.25∗∗∗

(1.65) (2.33) (2.76) (2.51) (2.61) (2.28)
Observations 10080 1992 1296 936 672 384
Fixed Effects 480 456 360 312 240 144
Clusters 420 83 54 39 28 16
Min market change 0 1 2 3 4 5

Notes: Table presents a sensitivity analysis of the main results in Table A10, where we control for the oil spot price. Table

regresses daily changes in coal futures (24 different maturities ranging from 1 to 24 months into the future) on the change in

the prediction market probability that a US cap-and-trade bill will pass. Coefficients give the percent change in coal futures

for a 100% change in the probability of the bill passing (i.e., from certainty in won’t pass to that it will pass). Columns differ

by what days are used in the analysis, with the bottom row listing the cutoff value for the absolute change in the prediction

market price (and Google Trends index) required for a day to be included. For example, column (1) of panel A includes all days,

while column (6) of panel A includes only the days when the prediction market price changed by at least 5 cents (equivalent

to a 5% change in the probability of passing). Column (1) of panel B again includes all days, while column (6) of panel B

includes only the days when the prediction market price changed by at least 5 cents and the Google search volume was at least

5% of the day with maximum search activity. All regressions control for changes in the S&P 500 index by maturity as well as

maturity-by-month fixed effects. Errors are clustered by day.
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